Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород влияние на окисление аммиака

    Весьма интересно отметить положительное влияние на активность цинк-хромового катализатора увеличения соотношения водорода к окиси углерода. В результате этого, во-первых, увеличивается концентрация дефектов и, во-вторых, отмечаются меньшие местные тепловые эффекты синтеза метанола, вследствие чего можно ожидать замедления дезактивации, связанной с уничтожением дефектов при отжиге. До сих пор не обращали внимания на степень превращения и величину теплового эффекта в пересчете на единицу поверхности катализатора в единицу времени. Рассмотрение этого вопроса в отношении синтеза и окисления аммиака показывает, что, чем больше тепла выделяется на 1 поверхности катализатора, тем быстрее дезактивируется катализатор. По-видимому, при разработке катализаторов для промышленных условий следует учитывать и эту сторону каталитического процесса. [c.103]


    Когда катализатор и реагирующие вещества находятся в разных фазах и отделены границей раздела, мы имеем дело с гетерогенным катализом. Чаще всего при гетерогенном катализе катализатором является твердое вещество, а реагирующие вещества находятся в газовой или в жидкой фазе, например при окислении аммиака или сернистого ангидрида, в присутствии металлической платины или разложении растворенной перекиси водорода под влиянием порошка двуокиси марганца. [c.77]

    Платиновый катализатор очень чувствителен к примесям, обычно присутствующим в воздухе и аммиаке. Наиболее сильное влияние оказывает фосфористый водород. При содержании его в аммиачно-воздушной смеси 2-10-5% степень окисления аммиака снижается на 80%, при этом отравление катализатора является необратимым. Вредное действие оказывают также соединения серы и некоторые другие вещества при содержании в газовой смеси 1 % сероводорода активность платины снижается на несколько процентов. [c.276]

    Кроме влияния паров воды и окиси азота на процесс окисления аммиака, следует отметить влияние других газов. Наличие в смеси водорода в пределах, находящихся вне области взрывоопасных концентраций, не отражается на выходе окиси азота. Добавление 10% водорода к аммиачно-кислородо-азот-ной смеси, содержащей 10% аммиака и 28% кислорода, приводило к повышению температуры контактирования выход окиси азота достигал 94% (без добавки водорода — 91%). Этим, по-видимому, объясняется и активирующее действие водородного пламени при прокаливании платиновых сеток. [c.82]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Добавление азида водорода и аммиака, являющихся обычными продуктами окисления гидразина, не оказывает влияния на скорость реакции. С другой стороны, добавление ацетамида, анилина и гидрохинона заметно снижает скорость реакции. Скорость реакции является функцией парциального давления кислорода реакцию можно рассматривать как гетерогенную в том смысле, что важную роль при ее протекании играет процесс диффузии кислорода через раствор. [c.136]

    Можно отметить, что каталитические яды, токсичность которых обусловлена наличием в их молекулах кратных связей, как правило, теряют ее, если они в процессе гидрирования превращаются в предельные соединения. Так, при очистке газов для синтеза аммиака, водород которых содержит небольшие количества окиси углерода, перед пуском в главный каталитический реактор газ иногда пропускают через форконтакт, при помощи которого окись углерода превращается в неядовитый метан. Детоксикацию окиси углерода можно также провести путем ее окисления. Например, Бредиг и его сотрудники [29] при проведении своих, ставших классическими, работ по изучению влияния посторонних веществ на скорость разложения перекиси водорода наблюдали, что активность платинового катализатора, отравленного только окисью углерода, остается низкой до тех пор, пока не пройдет достаточное время для превращения яда в нетоксичную двуокись углерода. Таким образом, в случае окиси углерода детоксикацию можно провести по любому из двух путей, изображенных на схеме  [c.130]

    Вторая группа изученных реакций — окисление водорода, аммиака на платине и метана на различных катализаторах — наоборот, оказалась весьма чувствительной к воздействию закалки. Наложение электрического поля никакого влияния на эти процессы не оказывает. [c.193]

    Применен разработанный одним из авторов метод проведения химических реакций на плоском катализаторе в условиях закалки, позволяющий изменять объем реакционной зоны введением закалочных стержней. Изучены реакции окисления сернистого газа, окиси углерода, водорода и аммиака на платине, окисления спиртов на серебре и окисления метана на различных катализаторах исследования проводились в условиях закалки, без закалки и в условиях наложения электрического поля. Результаты экспериментов показали, что исследованные реакции по их отношению к воздействию холодной закалочной поверхности и влиянию электрического поля могут быть разделены на две группы. К первой относятся реакции окисления сернистого газа, окиси углерода и спиртов. Отличительной особенностью указанных реакций является зависимость их кинетики от величины и знака потенциала, приложенного к катализатору, и отсутствие влияния холодной поверхности на ход реакции. Ко второй группе относятся реакции окисления водорода, аммиака и метана. В этом случае обнаруживается весьма значительная чувствительность кинетики к наличию холодной поверхности, в то время как влияние электрического поля остается незаметным. Характер воздействия электрического поля и закалки на изученные реакции приводит к выводу, что окисление сернистого газа и окиси углерода на платине и спиртов на серебре протекает гетерогенным, а окисление водорода и аммиака на платине и метана на различных катализаторах — гетерогенно-гомогенным путем. [c.353]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]


    Уже в 1935 г. мы обратили внимание на существование еще одного типа каталитических реакций, ускоряемых под влиянием простого повышения концентраций у поверхности или посредством сгущения в пленку, без существенного изменения состояния и структуры отдельных молекул. Для такого катализа, так же как и для катализа парамагнитными веществами, характерно отсутствие или малая величина истинной энергии активации, связанной непосредственно с ускоряемым процессом, а не со снятием продуктов реакции с поверхности. Областью применения являются каталитические реакции свободных атомов, молекул радикалов, нестойких молекул . Со времени введения этого понятия появилось много экспериментальных работ, подтверждающих реальность и распространенность этой категории . Достаточно упомянуть работы по исследованию гибели радикалов на стекле, по образованию перекиси водорода из гидроксильных радикалов на стенках сосудов, работы по окислению аммиака атомным кислородом . Интересный случай такого катализа был доказан и исследован Гибянским на примере окисления окиси азота в двуокись на силикагеле. При этом наблюдались критические явления, которые могут быть истолкованы либо как результат появления плоских цепей, либо как следствие особого типа эффектов, обусловленных неоднородностью поверхности, [c.25]

    Конкретные механизмы каталитич. реакций очень многообразны и пока лишь в немногих случаях более или менее твердо установлены. Различают гомогенный и гетерогенный К. При гомогенном К. катализатор и реагирующие в-ва образуют одну однородную систему. Примерами гомогенного К. может служить каталитич. окисление СО до СО2 в присутствии паров воды или ускорение гидролиза растворимых углеводов в водном р-ре в присутствии кислоты. В первом случае катализатор и катализуемые в-ва образуют однородную газовую фазу, во втором — однородный, или же истинный, р-р границы раздела между катализатором и реагирующими в-вами отсутствуют. При гетерогенном К. катализатор и реагирующие в-ва находятся в разных фазах и отделены границей раздела. Чаще всего при гетерогенном К. катализатором является твердое тело, а реагирующие в-ва находятся в газовой или жидкой фазе примером служит окисление аммиака в присутствии металлич. платины или разложение растворенной перекиси водорода нод влиянием нерастворимого в воде порошка двуокиси марганца. Отдельно следует упомянуть микрогетерогенный К., при к-ром катализатор находится в ко.плопдном или в высокомолекулярном состоянии. Примерами этого рода К. могут служить биокаталитич. процессы, в к-рых катализаторами являются ферменты, ускоряющие многие химич. реакции, существенные для протекания жизненных процессов (подробнее см. Ферменты). Гетерогенные каталитич. процессы часто называют к о н-тактными, а твердые катализаторы — контактными веществами или просто контактами. [c.230]

    С 1812 г., со времени открытия К. С. Кирхгофом реакции гидролиза крах.мала под влияние.м ггезпачнтельного количества серной кислоты, наблюдал Берцелиус за ходом первых каталитических открытий. Разложение аммиака на металлах, осуществленное в 1813 г. Л. Тенаром окисление метана кислородом воздуха на платине, открытое в 1817 г. Г. Дэви самовозгорание водорода и органических веществ на платине, обнаруженное в 1820—1822 гг. и Деберейнером,— все это Берцелиус объединил в 1835 г. в одно целое, назвал катализом и увидел в нем связующее звено между неорганической и живой природой. [c.172]

    Субстраты, окисляюгциеся в тканях, постепенно дегидрируются, т. е. теряют под влиянием различных последовательно включающихся в окислительный процесс дегидрогеназ атомы водорода. При аэробном окислении водород, проходя через ряд промежуточных переносчиков, встречается с кислородом, получающим электроны через цитохромную систему. Соединение водорода с кислородом приводит к образованию одного из конечных продуктов дыхания — воды. Субстрат, присоединяя воду и теряя водород, превращается в конце концов в соединение, имеющее характер кетокислоты. К числу кетокислот, образующихся при окислении различных субстратов в организме, относятся пировиноградная кислота, щавелевоуксусная, кетоглютаровая и др. Кетокислоты, подвергаясь частью окислительному декарбоксилированию, частью [3-декарбоксилиро-ванию, распадаются с отщеплением СО2. Остающаяся часть окисляемой молекулы вновь подвергается тем же превращениям, сопровождающимся отщеплением водорода и образованием воды, присоединением воды и анаэробным образованием СОа. Таким образом, образование Н2О и СО2 при тканевом дыхании является результатом чередующихся дегидрирований и декар-боксилирований субстрата дыхания. Именно так окисляются все важнейшие субстраты тканевого дыхания. Азотистые вещества, например аминокислоты, окисляются таким же образом, но имеющийся в этих соединениях азот в процессе окисления отщепляется в форме аммиака или переносится на соответствующие акцепторы аминных групп (стр. 332). Более конкретно механизм окисления ряда промежуточных продуктов аэробного обмена рассматривается на стр. 258,291. [c.237]

    Двуокись азота является эффективным катализатором реакции как в сухих, так и во влажных смесях окиси углерода с кислородом. Опыты Криота, Релинга и Кальхауна [62, 63] с сухими смесями показали, что при низких концентрациях NOj реакция имеет цепной характер и на нее сильно влияют характеристики сосуда. И в этом случае имеются нижняя и верхняя критические концентрации N0.2. В противоположность реакции между водородом и кислородом, сенсибилизированной NOj, в этом случае влияние освещения на стехиометрическую смесь при атмосферном давлении и 527°С оказалось пренебрежимо малым. На эту цепную реакцию накладывается гомогенный нецепной процесс, заключающийся, вероятно, в окислении СО двуокисью азота и преобладающий в присутствии больших концентраций NO,. При малых концентрациях Og реакцией, определяющей скорость этого гомогенного процесса, является, повидимому, окисление NO, так как NOj быстро исчезает вследствие реакции с СО. Последнее обстоятельство, а также неэффективность облучения говорят за то, что N0, не играет роли в реакции зарождения цепей и что скорее участником цепной реакции является N0. Можно думать, что определенную вероятность имеют реакции 03 + N0 = N0g + 0 и N0 -f СО = Oj-р + N0 -j- О, причем атомы О превращаются, главным образом, в Од благодаря реакции VIII. С помощью этих реакций, а также подходящих реакций обрыва цепи, подобных NOg- -NO = = 2N0,, и процессов обрыва с участием Од можно объяснить существование критических концентраций N0,. Подобные предположения требуют, однако, дальнейших экспериментальных подтверждений. На основании вышеизложенного очевидно, что и аммиак должен быть способен вызывать взрыв, в частности под действием света [64].  [c.78]

    Среии Первых объяснений каталитических процессов находится и такое, которое хотя и в очень отдаленной степени, но все же напоминает современные теории о влиянии кристаллической структуры катализатора на его активность. Это объяснение дал в 1823 г. немецкий исследователь Швейгер [6], связавший опыты Деберейнера со своим кристаллоэлектрическим учением. Уже в то время Швейгер назвал в качестве причин каталитической активности платины микрокристаллическую структуру ее поверхности, которая состоит из электрически заряженных металлических остриев. Но еще более интересным является то, что Швейгер впервые рассматривает совместно, такие явления, как распад аммиака на железе, окисление горючих газов на платине в лампе Дэви, окисление спирта на платиновом соединении в уксусную кислоту, разложение на металлах перекиси водорода и разложение с помощью железа синильной кислоты, осуществленные различными химиками на протяжении 10 лет, начиная с 1813 г. В 1824 г. он включает в число подобных явлений, т. е. химических реакций, протекающих при посредстве агентов, также и окисление сернистой кислоты с помощью окислов азота [7]. [c.30]

    Повышение температуры и давления приводило к заметному увеличению количеств высококипящих веществ, однако их гидроксильное числобыло низким. Таким образом, повидимому, увеличение выхода высококипящих веществ не является результатом альдольной конденсации. Было обнаружено, что небольшое количество (0,2% загрузки) метилата натрия полностью подавляет то слабое гидрирование альдегидов, которое обычно имеет место в первой стадии оксосинтеза. В незначительной степени протекают вторичные реакции—образование ацеталей из альдегидов и спиртов и полимеризация олефинов в высококипящие полимеры. Альдегиды, являющиеся главной составной частью продукта, очень реакционноспособны, и поэтому из смеси трудно выделить компоненты. Для получения индивидуальных альдегидов целесообразно сначала весь продукт прогидрировать, полученные спирты подвергнуть фракционировке, а фракции спиртов переводить в альдегиды с помощью окисления или дегидрирования. Повидимому, синтез альдегидов из олефинов и смеси окиси углерода с водородом в первой стадии, оксисинтеза является гомогенной каталитической реакцией. Так, на скорость оксосинтеза пе оказывают влияния заметные количества сернистых соединений, в то время как водный раствор аммиака полностью подавляет синтез [4]. Это явление обусловлено, повидимому, образованием комплекса кобальта с аммиаком, сопровождающееся разрушением активного катализатора, которым, вероятно, является гидрокарбонил кобальта. Одновременно с синтезом альдегидов протекает каталитическая миграция двойной связи в олефинах. [c.382]

    Изученные этим методом процессы каталитического окисления спиртов на серебре [31, метанана различных катализаторах [4], сернистого газа [2], а также окиси углерода, водорода и аммиака на платине по их отношению к влиянию закалки и электрического поля можно разбить на две группы (см. таблицу). [c.192]


Смотреть страницы где упоминается термин Водород влияние на окисление аммиака: [c.89]    [c.523]    [c.287]    [c.205]    [c.9]    [c.30]    [c.67]    [c.353]    [c.516]    [c.23]    [c.148]    [c.31]   
Технология азотной кислоты (1962) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак окисление

Окисление окисление аммиака



© 2025 chem21.info Реклама на сайте