Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопротивление жидкости газа

    Результат большинства опубликованных "работ — определение константы Козени — Кармана К в уравнении (11.32). Эта константа связана с коэффициентом сопротивления /э в области преобладания сил вязкости соотношением (11.35). Технически определение К сводится к исследованию зависимости между перепадом давления Др на некотором стабилизированном участке высоты слоя зерен I и удельным расходом подаваемой жидкости (газа)У/5 = ы. Эту зависимость стараются определить в возможно более широком интервале изменения скорости потока. Полученные результаты, усредненные в области прямой пропорциональности Др и и, позволяют определить величину К. Наиболее достоверные результаты ее определения для зернистых слоев различной структуры приводятся ниже. [c.54]


    Зернистый слой из колец,с высотой, обычно равной внешнему диаметру (кольца Рашига и их модификации), широко используют в химической технологии как насадку в абсорбционных, ректификационных и реакционных аппаратах. Исследованию гидравлических закономерностей в такой насадке посвящены специальные монографии [63,80]. При этом в работе Жаворонкова [63] для наиболее существенного для практики интервала критериев Rea = 40—4000 рекомендована одночленная степенная зависимость = 3,8/Re - , которая в указанном интервале дает значения fs, в 1,5—2 раза превышающие рассчитанные по зависимости (11.62). Однако на кривую = 3,8/Re - достаточно удовлетворительно укладывается большинство опуб-, линованных данных и она может быть рекомендована для инженерных расчетов. В принципе, для течения с преобладанием сил инерции условия течения жидкости (газа) между кольцами и внутри них несколько различны и коэффициент сопротивления /э может зависеть не только от Rea, но и от отношения внутреннего и внешнего диаметра кольца di/ 2 [42]. Однако однозначной зависимости /э от этого параметра установить не удалось. [c.65]

    При отсутствии циркуляции внутри частицы уравнения конвективной диффузии сводятся к уравнению молекулярной диффузии. Будем рассматривать массообмен, осложненный прямой бимолекулярной реакцией дробного порядка. Для обратной реакции приведем два случая -мономолекулярную и бимолекулярную реакцию. Рассмотрим общий случай соизмеримых сопротивлений фаз. Циркуляцией внутри частицы можно пренебречь в системе жидкость-газ из-за больщих значений д или при наличии ПАВ, тормозящих циркуляцию. [c.284]

    Рассмотрим вначале случай, при котором отсутствует химическое взаимодействие растворенного газа с жидкостью. Пусть поверхность жидкости соприкасается с газом в момент времени t — О, причем начиная с этого момента концентрация по всей плоскости поверхности постоянна и равна Л. Эта концентрация соответствует растворимости газа при данном его парциальном давлении над поверхностью жидкости, которое считается постоянным. Если газ находится в смеси с другим газом, обладающим иной растворимостью, или если существует сопротивление прохождению газа через поверхность, концентрация у поверхности может меняться во времени. Такой случай будет рассмотрен позже (см. раздел III-7). [c.42]

    Когда абсорбируемый растворимый в жидкости газ находится в смеси с нерастворимым газом, первый из них должен диффундировать через второй для достижения поверхности раздела фаз. В результате парциальное давление растворяемого газа у поверхности в общем случае ниже, чем в основной массе газовой фазы. Истинная картина процессов, протекающих в газовой фазе, не ясна, и, вероятно, столь же сложна, что и процессы в жидкости. Обычно употребляют термин газо-пленочное сопротивление , подразумевая под этим наличие у границы фазового раздела со стороны газа неподвижной пленки определенной толщины, через которую растворяемый газ переносится исключительно молекулярной диффузией, в то время как остальная масса газа имеет практически однородный состав. Это точно соответствует пленочной модели для описания процессов, протекающих в жидкой фазе. Однако для газовой фазы такая картина более правдоподобна, так как при перемещении газа относительно поверхности жидкости, несомненно, образуется пограничный слой аналогично слою, образующемуся при движении газа вдоль твердой поверхности. О последнем процессе имеется более подробная информация. Разумеется, можно считать большим упрощением, что погра- [c.146]


    Вязкость — свойство жидкости (газа) оказывать сопротивление перемещению под действием внешних сил одной части жидкости (газа) относительно другой. [c.52]

    Использовав формулу аддитивности фазовых сопротивлений и понятие об общем коэффициенте массопередачи через границу раздела жидкость — газ [c.20]

    В подавляющем большинстве двухфазных жидкостных реакторов жидкость—жидкость или жидкость—газ химическое взаимодействие происходит в сплошной фазе. Поэтому наибольший интерес при расчете скорости массопередачи, осложненной химической реакцией, представляет случай, когда процесс массопередачи лимитируется сопротивлением сплошной реакционной фазы. [c.237]

    Вязкость жидкости (как и газа) представляет собой сопротивление жидкости передвижению одного ее слоя относительно другого. Какими физикохимическими признаками обусловлена вязкость В табл. 65 приведены -вязкости (сантипуазы) некоторых жидкостей при двух температурах. Почему при [c.166]

    Аппараты и трубопроводы повреждаются от механических воздействий в результате недопустимых напряжений в материале аппаратов, которые возникают в процессе эксплуатации при увеличении рабочего давления выше допустимого предела или в результате нарушения технологического регламента, вызывающего не предусмотренные расчетом температурные и динамические нагрузки. Так, например, при нарушении материального баланса в технологическом цикле давление может повышаться или понижаться. При увеличении подачи насоса давление уменьшается, и наоборот, с уменьшением подачи — увеличивается. Внезапное изменение подачи насосов или компрессоров возможно при неправильном соединении аппаратов с более высоким и низким давлением, при отсутствии регуляторов расхода, изменении гидравлического сопротивления транспортных линий (ледяные, кристаллогидратные или полимерные пробки, неисправная запорная и регулирующая арматура и т.п.), отключении или увеличении гидравлического сопротивления дыхательных и стравливающих линий, переполнении емкостей и аппаратов жидкостями, газами и т.д. [c.81]

    Для малых плотностей орошения разница между сопротивлением орошаемого и неорошаемого аппарата будет относительно малой величиной и поэтому незначительное количество энергии будет использоваться для передачи массы. При малых плотностях орошения сопротивление орошаемого аппарата зависит в основном от сопротивления трения газа о геометрическую поверхность канала. При малых плотностях орошения массопередача будет осуществляться в пленке жидкости на геометрически фиксированной поверхности. [c.149]

    Так как на тарелке выше прорезей колпачка находится газожидкостная эмульсия, то сопротивление орошаемой тарелки будет в действительности ниже, чем рассчитанное по уравнению (IV, 240). Поэтому в уравнение (IV, 240) вводится коэффициент аэрации жидкости <р, тогда сопротивление слоя газо-жидкостной эмульсии выразится следующим образом  [c.329]

    Сопротивление потоку тепла нри прохождении его через любую другую среду (жидкость, газ, пар) выражается посредством пленки , которая имеет такое же сопротивление, как и сама среда. Интенсивность теплообмена между движущейся средой и поверхностью ее раздела с другой средой (поверхностью твердого тела) характеризуется коэффициентом теплоотдачи а. [c.127]

    Высота слоя насадки в абсорбционной колонне влияет на равномерность распределения газа и жидкости по сечению колонны и зависит от диаметра колонны. Обычно значение отношения к Ш должно быть равно 2—5. При соотношении к 1В Г>5 будет возрастать сопротивление потоку газа, а коэффициент 11) уменьшится (жидкость имеет тенденцию двигаться по направлению к краям колонны). [c.160]

    Потери напора на трение по длине рассчитывают по формуле Дарси — Вейсбаха для соответствующего участка трубопровода, местные потери напора — в зависимости от типа местного сопротивления. Обычно задаются скоростью жидкости, а затем рассчитывают потери напора, которые должны находиться в допустимых пределах. Ориентировочные скорости движения жидкости, газов и паров в трубопроводах приведены ниже, м/с  [c.62]

    Главными факторами, определяющими эффективность аппарата, являются 1) производительность единицы объема, т. е. интенсивность его работы 2) удельный расход энергии на перемещение жидкости, газа и на создание межфазной поверхности. Оба фактора определяются в первую очередь конструкцией аппарата-и режимом его работы. Наилучший прием интенсификации — турбулизация газожидкостной системы, которая вызывает уменьшение диффузионных или термических сопротивлений на границе раздела фаз и непрерывное обновление контакта фаз, обеспечивающее работу с поверхностью малого возраста [222, 232, 234]. [c.12]


    Решение. Можно принять, что диффузионное сопротивление жидкости ничтожно мало по сравнению с сопротивлением газа, т. е. общий коэффициент массопередачи к приближенно равен коэффициенту массоотдачи йг для газа. Для этого случая воспользуемся обобщенным уравнением для пленочного режима работы абсорбера [в соответствии с уравнением (VII. 28)]  [c.176]

    Сили сопротивления сдвигу , возникающая при относительном движении двух смежны] слоев жидкости нли газа, пропорциональна градиенту скорости V вдоль оси у, нормаль-яой к направлению потока жидкости (газа)  [c.982]

    Введение в гомогенный поток жидкости газа, являющегося дополнительным ее турбулизатором, должно изменить условия формирования диффузионного слоя у поверхности частицы и соответственно отразиться на коэффициенте массопереноса. Но такое изменение будет ощутимо только в том случае, если массоперенос лимитируется внешним сопротивлением. Экспериментально это было подтверждено [122] методом измерения диффузионного потока от анодной платиновой частицы диаметром и длиной 5 мм, помещенной в слой зернистого материала. Исследования проводились при следующих гидродинамических условиях О < Ке, < 13,8 О < Ке < 30. [c.76]

    Жидкость вводится в реактор через штуцер 5 и, заполнив трубное пространство, сливается через штуцер 6. При подаче в реактор газа по штуцеру 7 под нижней трубной решеткой образуется газовый слой, отжимающий жидкость вниз до тех пор, пока не откроются отверстия 4 и газ не устремится через них в барботажные трубы. Расчетная высота Н газового слоя (от оси отверстий до уровня жидкости) будет определяться сопротивлением односторонне затопленных отверстий, зависящим в основном от скорости проходящего через них газа. Для устранения волнения поверхности жидкости газ направляется под нижнюю трубную решетку отбойным листом 8. Межтрубное пространство реактора используется для подачи в него теплоносителя. [c.81]

    При постоянных расходах жидкости, пересчитанных на единицу поперечного сечения колонны (массовая скорость О ), сопротивление потоку газа изменяется в соответствии с уравнением (П-106) [c.136]

    Одним из основных параметров ИУ является его пропускная способность (см. ГОСТ 14691—69). Расчет и выбор ИУ по пропускной способности значительно проще и эффективнее расчета и выбора ИУ по коэффициенту гидравлического сопротивления. В шестидесятые годы были разработаны формулы для определения пропускной способности ИУ, регулирующих потоки жидкостей, газов и водяного пара. Различные модификации этих формул приведены как в отечественной, так и в зарубежной литературе, например в работах [4, 9, 25, 26]. Эти формулы дают удовлетворительные результаты прн расчете пропускной способности традиционных двухседельных исполнительных устройств, регулирующих потоки несжимаемых или сжимаемых сред при малых перепадах давления. [c.130]

    СТП АЖЦ 607—72 содержит методики расчета и выбора основных параметров ИУ и приложения. В приложениях приведены данные, позволяющие пользоваться стандартом без дополнительной литературы, а именно методы определения гидравлического сопротивления трубопроводной сети, значения коэффициентов кавитации и коэффициента критического расхода, свойства некоторых жидкостей, газов и водяного пара, методы определения [c.130]

    Если под действием некоторой силы Р (сила тяжести, центробежная сила и т. д.) твердая частица движется в какой-либо среде (жидкость, газ), то частица испытывает сопротивление среды, причем сила этого сопротивления направлена в сторону, обратную направлению движения частицы. [c.194]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]

    Зафиксированы случаи попадания воздуха в систему через барометрический стакан с последующим загоранием образовавшейся ацетилено-воздушной смеси (содержащей более 10% кислорода) в трубопроводах ацетилена. Это объясняется тем, что при увеличении скорости подаваемого газа в барометрической емкости создается избыточное давление, превышающее барометрическую высоту жидкости. При этом в оказавшийся под вакуумом барометрический стакан вследствие выдавливания из него жидкости в систему через переливные линии засасывается воздух. Поэтому для предупреждения аварии следует предусматривать трубопроводы достаточного сечения, чтобы сопротивление выходу газа было минимальным и была исключена возможность чрезмерного повышения давления в барометрических емкостях. Для ограничения разового поступления большого количества газа в аппарат устанавливают диафрагмы на трубопроводах азота, подаваемого в различные бачки для выдавливания конденсата в барометрический стакан. [c.31]

    Для эфх1)ективной работы адсорбентов в качестве поглотителе в противогазах, активных катализаторов или носителей каталитически активных веществ, осушителей, а также при адсорбционном разделении компонентов смесей применяются тела с поверхностями в несколько сотен н до тысячи мЧг. Вместе с тем такие адсорбенты применяются обычно в зерненом виде (в виде таблеток, гранул, маленьких шариков) для придания им необходимой механической прочности и уменьшения сопротивления потоку газа или жидкости. Размеры гранул составляют обычно 0,1--2 лш. Этим условиям—высокой внутренней поверхности гранул удовлетворяют достаточно тонкопористые адсорбенты. [c.513]

    Высота отводной трубки над уроввем кипяш,ей жидкости тоже очень важна, так как горло колбы само ио себ оказывает сопротивление движению газа. J5 случге высокомолекулярных жидкостей, киняш их при эчень низких давлениях, обнаруживается, что в колбах с более высоко расположенными отводными трубками температура кипения выше, чем в колбах с низко расиоложенными отводными трубками. Поэтому для получения лучших результатов перегонки высококипящих жидкостей следует употреблять колбы с широкими отводными трубками, расположенными как можно ближе к поверхности кипящей жидкости (рис. 52). [c.257]

    Следует указать, что невозможно достаточно полно описать основные закономерности процесса разделения в насадочной колонне, если оперировать только такими величинами, как высота, эквивалентная т еоретической ступени или единице переноса. Зицман [159] показал, что массообмен в насадочной колонне протекает тем интенсивнее, чем легче проникают компоненты из ядра одной фазы к границе раздела жидкость — газ и оттуда далее в ядро другой фазы. Поэтому необходимо принять во внимание два диффузионных сопротивления, а именно при массопере-носе внутри паровой фазы и при массопереносе внутри жидкой фазы. Диффузионные сопротивления зависят от среднего пути переносимого вещества в соответствующей фазе, от степени перемешивания фазы в точках контакта между насадочными телами, от турбулентных завихрений и других факторов, которые уже были обсуждены в разд. 4.2. Соотношение между диффузионными сопротивлениями в газовой и жидкой фазах, экспериментально измеренные Зицманом для семи различных типов насадки, указаны в табл. 17. Из данных табл. 17 следует вывод, что вклад диффузионного сопротивления газовой фазы в общее сопротивление массопереносу при ректификации может составлять от 9 до 96%. [c.119]

    В этой главе детально рассмотрена проблема получения информации о межмолекулярных силах из экспериментальных данных по вириальным коэффициентам (и коэффициенту Джоуля— Томсона). На основании самых общих наблюдений в отношении межмолекулярных сил можно сделать несколько качественных замечаний. Во-первых, тот факт, что газы конденсируются в жидкости, позволяет сделать предположение о существовании сил притяжения между молекулами на больших расстояниях. Во-вторых, очень сильное сопротивление жидкостей сжатию свидетельствует о том, что на небольших расстояниях действуют силы отталкивания, резко изменяющиеся с расстоянием. При условии парной аддитивности сил можно ожидать, что потенциальная энергия взаимодействия между двумя молекулами изменяется таким образом, как показано на фиг. 4.1. [Эта потенциальная энергия может зависеть также от ориентации, если молекулы не являются сферически симметричными, а в некоторых случаях иметь отклонения (на фиг. 4.1 не показаны), которые несущественны для общего рассмотрения.] Квантовая механика дает обширную информацию о форме кривой потенциальной энергии, однако точные расчеты на основании этой информации не всегда возможны. Не рассматривая эту дополнительную информацию, поставим перед собой следующий вопрос возможно ли в принципе однозначное определение межмолекулярной потенциальной энергии, если известна зависимость второго вириального коэффициента от температуры Этот вопрос был рассмотрен Келлером и Зумино [1] (см. также работу Фриша и Хелфанда [2]), которые нашли, что только положительная ветвь и г) определяется однозначно [2а], а отрицательная часть (потенциальная яма) может быть известна лишь частично, т. е. определяется ширина ямы как функция ее глубины. Таким образом, потенциальная яма на фиг. 4.1 может быть произвольно смещена вдоль оси г без изменения В Т), если ее ширина не изменяется при смещении. Поэтому для температур, при которых положительная ветвь ы(г) не дает большого вклада в В Т), значения В Т) будут определяться почти одинаково хорошо [c.168]

    Фильтрование — способ разделения суспензии, достигаемый пропусканием ее через пористую перегородку. Твердые частицы задерживаются перегородкой и образуют осадок, а прошедшая через лерегородку жидкость (газ) называется фильтратом. С течением времени толщина слоя осадка увеличивается и сопротивление фильтра возрастает, а образовавшийся осадок выполняет роль фильтровальной перегородки. Это обстоятельство часто используют, чтобы придать осадку специальную структуру, обеспечивающую задерживание мелких частиц. С этой целью в суспензию добавляют мелкие частицы другого материала (например, песок, кварц и др.), которые придают осадку жесткую пространст-ненную структуру с мелкими порами. [c.327]

    Диспергирование газа в объеме жидкости путем барботажа, т. е. пропускание (пробулькивапие) пузырьков через слой жидкости в колоннах с ситчатыми (решетчатыми) или колпачковыми полками (тарелками). Величина F равна поверхности всех пузырьков. Бар-ботажные колонны работают интенсивнее насадочных, но применяются реже, так как создают большее гидравлическое сопротивление потоку газа. [c.11]

    В основу разработки вихревых аппаратов для газонасыщенных растворов были положены известные газовые и пародисперсные вихревые вертикальные кожухотрубные теплообменники, конструкция которых изменялась с учетом рассмотрения особенностей физической модели жидкость-газ . Основным отличием газосодержащей системы от газовой в вихревых аппаратах является на порядок более низкая предельная скорост ь протекания среды (17 -25 м/с) по сравнению со скоростями газов (330 м/с). Дисковые энергоразделители, используемые в газовых вихревых камерах с тангенциальным вводом газа, имеют большое сопротивление потоку рабочей среды и не могут быть использованы для газожидкостных сред ввиду малой пропускной способности среды. Поэтому дисковый энергоразделитель не использовали, а увеличивали на порядок размеры каналов диафрагмы. [c.264]

    В этих формулах с/ — скорость газа, отнесенная к свободному сечению колонны, м1сек Др1=Дрт — Ароух — гидравлическое сопротивление жидкости на тарелке, н1м Арт — общее гидравлическое сопротивление тарелки, определяемое по уравнению (Х-137) Арсух — сопротивление сухой тарелки, определяемое по уравнениям (Х-138) и (Х-143).  [c.702]

    А. Введение. Основные особенности поведения псевдоожиженных систем описаны в 2.2.6, а также, например, в работах [1—4]. Частицы в условиях ожижения поддерживаются воздействующей на них силой сопротивления жидкости, текущей вверх через слой. Системы, псевдоожиженные газом, характеризуются сильным перемешиванием, возникающим внутри объема слоя при подъеме газовых пузырей . Объемная скорость двих ения таких пузырей приблизительно равна скорости газа, необходимой, чтобы [фивести слой в состояние ожижения, т. е. [c.445]

    Важной задачей является определение наивыгоднейшего диаметра трубопровода. Если для определенного расхода жидкости (газа) W установить трубопровод с большим диаметром, то рас.ходы на строитель- д, ство трубопровода будут велики, а при предусмотренном количестве лет его работы, учитывая стоимость ремонта и содержания, получатся большие годовце расходы на амортизацию и ремонт К. Но при этом гидравлическое сопротивление трубопровода, а следовательно, и расход мощности на транспортировку жидкости (газа) будут небольшими, а отсюда эксплуатационные расходы К<2 — относительно незначительными. По мере уменьшения диаметра трубопровода (сопротивление потоку возрастает) расходы 1 будут уменьшаться, а эксплуатационные расходы Кг — увеличиваться (рис. 1-32). [c.55]

    Рассчитываем коэффициент массопередачи. Полагая, что диффузиомное сопротивление жидкости мало по сравнению с сопротивлением газа, принимаем, что коэффициент массопередачи К равен коэффициенту массоотдачи Рг газовой фазы. [c.352]


Смотреть страницы где упоминается термин Сопротивление жидкости газа : [c.11]    [c.44]    [c.228]    [c.56]    [c.419]    [c.91]    [c.157]    [c.14]    [c.18]    [c.448]    [c.395]    [c.116]    [c.70]   
Пылеулавливание и очистка газов в цветной металлургии Издание 3 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости



© 2025 chem21.info Реклама на сайте