Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы методы отделения и разделения

    Редкоземельные элементы обладают весьма близкими химическими свойствами и при отделении их от других элементов практически всегда выделяются в виде суммы соединений всех редкоземельных элементов (например, оксалатов или фторидов). Для разделения и выделения отдельных элементов этой группы используют различные химические и физико-химические методы. Для определения отдельных редкоземельных элементов в их смеси наряду с некоторыми физическими методами используют спектрофотометрические методы. [c.200]


    Вследствие того, что скорости образования акво- и хлороком-плексов в этанольных растворах НС1 много меньше, чем в соответствующих водных растворах, можно получить количественное разделение комплексов хроматографическим методом. Однако отделение Сг(1П) от многих элементов, за исключением Th(IV), Zr(IV), Ва(И) и некоторых редкоземельных элементов, затруднительно из-за того, что разные комплексы Сг(1И) элюируют в существенно различных условиях [1072]. Значения Kd увеличиваются с ростом длины углеродной цепи в молекулах спиртов, изомерия последних не оказывает влияния [499]. [c.136]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]

    Отделение тория (и скандия) от редкоземельных элементов осаждением тиосульфатом натрия не дает вполне удовлетворительных результатов, так как торий при этом не осаждается количественно и разделение недостаточно четко. Этот метод менее пригоден для отделения тория от иттриевых земель, чем от цериевых . Другим недостатком метода является выделение серы в процессе осаждения, что при содержании малых количеств тория не дает возможности установить, имело ли место образование осадка гидроокиси тория. [c.604]

    В ряде аналитических работ использовалось селективное поглощение тория на сильноосновных анионитах в сульфатной форме. Как следует из рис. 15. 23, торий в сульфатном растворе может быть отделен от редкоземельных элементов. Быстрое разделение достигается при pH 2 [86]. Редкоземельные элементы, если это необходимо, могут быть определены в вытекающем растворе. Торий элюируют 2М азотной, соляной или хлорной кислотой и затем определяют в виде оксалата. Этот метод использовался для анализа монацитовых концентратов. [c.342]


    Так можно назвать применение химических принципов, свойств и методов для разделения смесей, в том числе минеральных руд, на составляющие их отдельные элементы и соединения. Разделение основано на различии таких свойств компонентов смеси (элементов и молекул), как растворимость, летучесть, адсорбционная способность, способность к экстракции, стереохимия и ионные свойства. Вот пример. Нужно выделить из минерала монацита и отделить друг от друга редкоземельные элементы неодим и празеодим, играющие важную роль в производстве лазеров. Самая трудная стадия этого процесса — отделение неодима и празеодима от церия, который имеет те же химические свойства. Фотохимические исследования показали, что разделение можно значительно улучшить с помощью избирательного возбуждения при облучении, поскольку это позволяет воспользоваться различиями в химических свойствах возбужденных состояний ионов. [c.198]

    Берцелиус рассматривал возможность фракционированного окисления церия для отделения его от иттрия — своеобразный эмбрион будуш,его метода разделения редкоземельных элементов, основанного на использовании аномальных валентностей редкоземельных элементов. [c.13]

    Торий может быть отделен от сопутствующих ему (в монаците и в большинстве других ториевых минералов) редкоземельных элементов различными методами. До разработки методов экстракционного и ионообменного разделения этих смесей использовались главным образом методы фракционного осаждения фосфатов и гидроокисей , а также методы, основанные на способности тория образовывать растворимые карбонатные и оксалатные комплексы. [c.324]

    Разделение электролизом с ртутным катодом. Это метод отделения алюминия от очень многих элементов. Обычно отбирают такую порцию раствора, чтобы в ней было от 10 до 100 мкг алюминия. Электролиз проводят в среде 8 и. серной кислоты при силе тока 3—5 а. Применяют прибор, описанный на стр. 240. Так отделяют 1 г меди или железа в течение 1 ч, 1 г олова, сурьмы, свинца или цинка в течение 2—3 ч. В растворе остаются алюминий, бериллий, ванадий, редкоземельные элементы, щелочные и щелочноземельные элементы и т. п., а также в небольшом количестве марганец. [c.698]

    Общие методы разделения. Большинство методов отделения редкоземельных элементов (см. стр. 952) применимо и для отделения скандия. [c.1012]

    Т. широко применяют в аналитич. химии для отделения и разделения элементов методами экстракции, для концентрирования при определении следов металлов, при переработке ядерного горючего, разделения элементов, близких по химич. свойствам, как, напр., редкоземельных или трансурановых элементов. К преимуществам Т. как экстрагента относятся высокие коэфф. распределения ионов металлов в системе вода—Т.— органич. растворители, что позволяет в большинстве случаев достигнуть практически полного извлечения, нелетучесть в широком интервале темп-р, вследствие чего работа с пим безопасна, малая растворимость в воде, малая чувствительность к радиоактивным излучениям, химическая инертность. Из р-ров нитратов Т. экстрагирует U ( 1), Се (IV), Zr, Hf, Th, Pu (IV), Ru (VI), РЗЭ, Np (IV), Np (VI), Am (VI), Au (IJI), Fe (III), S , Pa (IV). При определенных условиях уран может быть отделен практически от всех элементов. Для экстракции Т. применяют в виде р-ров в различных органич. растворителях (бензол, хлороформ, спирты, эфиры и т. д.) при этом снижаются коэфф. распределения, но увеличивается селективность. Для повышения селективности, кроме того, имеет большое значение применение различных маскирующих комплексообразующих в-в (в особенности комплексонов), а также выбор концентрации Т. в инертном растворителе, концент-)ации высаливателей и концентрация азотной к-ты. [c.128]

    Частыми случаями в аналитической практике является отделение фосфат-иона, селена, теллура от катионов. Предложены методы, с помощью которых решаются эти задачи. Многочисленны методы разделения ионов металлов. Практически все ионы можно разделить на колонках ионитов. Очень часто одна и та же задача может быть решена как с помощью катионитовой, так и анионитовой колонки. В качестве элюентов применяют растворы органических и неорганических веществ. Так, для разделения редкоземельных элементов на катионитах кроме лимонной кислоты с успехом используют растворы комплексонов. Для разделения циркония — гафния применяют щавелевую кислоту. При анионообменных разделениях часто используют растворы соляной кислоты различной концентрации и смеси ее с фтористоводородной, а также растворы серной кислоты, карбоната ам-.мония и т. д. [c.55]

Рис. 82. Хроматографическое разделение радиоизотопов редкоземельных элементов после отделения эрбия, облученного протонами с энергией 660 Мэе, методом распределительной хроматографии. Катионит дауэкс-50Х8 (12—15 меш) [188] Рис. 82. <a href="/info/39784">Хроматографическое разделение</a> радиоизотопов <a href="/info/2346">редкоземельных элементов</a> <a href="/info/1660286">после отделения</a> эрбия, <a href="/info/572253">облученного протонами</a> с энергией 660 Мэе, <a href="/info/1618449">методом распределительной хроматографии</a>. Катионит дауэкс-50Х8 (12—15 меш) [188]

    Отделение актиния от группы редкоземельных элементов, особенно от лантана, является одной из самых сложных задач аналитической химии. М. М. Зив, Б. И. Шестаков и И. А. Шестакова [135] предложили способ и осуществили разделение лантана и актиния методом распределительной хроматографии с обращенной фазой из 100%-го трибутилфосфата, с использованием в качестве элюирующих растворов смеси 10 М NH NOg+O,] М HNOg. В качестве носителя органической фазы использовался порошок фторопласта-4. В соответствии с коэффициентом распределения барий проходит через колонку без поглощения, затем вымывается актиний и последним выходит лантан. [c.176]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    В некот(М)ых случаях, как, например, в экстракционных разде-лшвях, в о(й>емных определениях или в колориметрии, особое внимание уделяется рассмотрению поведения четырехвалентного церия. Среди методов разделения более подробно рассмотрены два основных метода хроматографический и экстракционный. В основном первый Из них применяется для разделения смесей редкоземельных элементов и в этой части освещен более детально. Отдельные методы количественного определения весьма неравноценны так, объемные методы, основанные на реакциях окисления-восстановления, применяются в основном для определения церия, полярография — для определения европия и иттербия, а объемные методы с использованием комплексообразующих или осаждающих реагентов—для группового определения редкоземельных элементов. Наиболее универсальные оптические и активационный методы рассмотрены в гораздо большем объеме ввиду их особой роли в анализе смесей редкоземельных элементов. В главах по прикладным вопросам уделено значительное внимание анализу особо чистых веществ и отделению редкоземельных элементов от других элементов. [c.6]

    Другая схема разделения и выделения осколков деления основана на последовательном осаждении сначала гидроокиси рутения (на гидроокиси железа), а затем карбонатов стронция и редкоземельных элементов [30]. Цезий, остающийся в растворе после отделения рутения, стронция и редкоземельных элементов, сооса-ждается с алюмо-аммонийными квасцами, от которых отделяется дробной кристаллизацией и окончательно выделяется в виде хло-роплатината. Очистка рутения осуществляется дистилляцией его в форме Ки04. Отделение стронция от редкоземельных элементов достигается осаждением его в виде нитрата из концентрированной азотной кислоты. Церий отделяется от прометия методом ионного обмена. [c.35]

    Отличительной чертой хроматографических методов является возможность их широкого применения. Хроматография может быть использована ДЛЯ разделения как больших, так и малых количеств элементов. Она может быть с одинаковым успехом применена к органическим и неорганическим веществам, для больших и малых молекул, для анионов и катионов. Кроме того, имеется возможность применять разнообразшле растворители и элюенты. В области-аналитической химии хроматография открывает большие возможности для разделения редкоземельных металлов, для отделения ниобия от тантала, гафния от циркония и т. д. Она может приобрести также большое значение для упрощения некоторых продолжительных методов анализа. Так, например, при определении пятиокиси фосфора в апатите сначала из раствора - Саз(Р04)а извлекают хроматографически ионы Са +, а затем титруют освобожденную фосфорную кислоту. Техника хроматографии разнообразна, но для аналитических [c.183]

    Превосходные разделения в аналитической химии можно выполнить пользуясь в качестве элюента растворами ЭДТА [28]. Примером может служить разделение кальция, стронция, бария и радпя [6, 15]. Кальций и стронций элюируют раздельно 0,01М раствором ЭДТА при pH 7,4. Затем при pH 9 элюируют последовательно барий и радий. Аналогичные методы разделения щелочноземельных металлов применялись многими авторами [9, 13, 38, 88 89]. Этп-лендиаминтетраацетат является ценным элюентом и тогда, когда нужно щелочноземельные металлы отделить от других металлов. В этом случав также рекомендуется применять ступенчатое элюирование растворами с повышающейся величиной pH. Для химика-аналитика представляет также интерес отделение редкоземельных элементов от стронция и бария [15], разделение актиния, висмута, свинца и радия [15], а также отделение алюминия от магния [22]. Когда константы нестойкости комплексов значительно различаются, разделение удобно осуществлять методом селективного поглощения. Типичным примером может служить разделение свинца и бария [76]. [c.313]

    Классическая схема группового отделения редкоземельных элементов от других продуктов ядерного расщепления была разработана с связи с так называемым Плутониевым проектом . Эта схема была разработана для препаративных целей, но она представляет интерес и с аналитической точки зрения. Следует отметить, что для препаративных целей предложена новая схема, основанная на сочетании ионообменного и других способов разделения (см., например, [77]). Применяемые аналитические методы основаны на том, что редкоземельные элементы хорошо поглощаются катионитами из солянокислого раствора. Шуберт, Рассел и Фароби [78, 79 ] вы -делили иттрий из мочи, подкисленной до 0,1М НС1. Подкисление препятствует выпадению осадка и разрушает комплексы иттрия с компонентами мочи. В начале одно- и двухзарядные катионы элюируют соляной кислотой (например, 0,8М [27]). Иттрий элюируется последним 6Ж соляной кислотой. Определение иттрия в костях п в яичной скорлупе основано на том же принципе [27]. [c.326]

    Для определения редкоземельных элементов в бериллии, уране и титане, а также в их сплавах и окислах, Калман с сотрудниками [40 ] рекомендуют соосаждение с фторидами кальция и магния и последующее катионообменное разделение. Ионы фтора удаляют прокаливанием, а редкоземельные элементы поглощают катионитом из М НС1. Кальций и магний элюируют той же кислотой. Наконец, редкоземельные элементы удаляют из колонки и определяют спектральным методом. Отделение редкоземельных элементов от цинка можно осуществить также в хлоридном растворе. В качестве элюента Фриц и Каракер [21 ] применили 0,1М раствор хлорида этхглен-диаммония вначале элюируется цинк, а затем — лантан. [c.327]

    Большинство редкоземельных элементов плохо поглощается анионитами из азотнокислых растворов (рис. 15. 5). Распространенный метод спектрального определения скандия и редкоземельных элементов в тории основан на ионообменном ра.зделении в 8М HNOj, [18 ]. В этой среде торий поглощается анионитом, а большинство редкоземельных элементов и скандий не поглощаются. После стадии поглощения через колонку пропускают 8М HNOg для вытеснения оставшегося раствора. Следует избегать длительного пропускания кислоты, чтобы предотвратить элюирование тория. В четырехвалентном состоянии церий ведет себя подобно торию и поэтому может быть также легко отделен от других редкоземельных элементов. Во избежание восстановления церия (IV) разделение выполняют в присутствии бромата [50]. [c.328]

    Поведение трапсплутониевых элементов при хроматографических разделениях на анионитах также служило предметом исследований. Элементы с атомными номерами большими, чем у кюрия, удерживаются анионитами в среде концентрированной соляной кислоты [73, 120 ], в то время как америций и кюрий немедленно элюируются вместе с редкоземельными элементами. Для анионообменного отделения трапсплутониевых элементов от лантанидов применялись также кон-центрированные растворы хлорида лития [44] и тиоцианатные комплексы [22, 87, 115, 120]. Эти исследования дали ценную информацию о свойствах новых элементов. Анионообменный метод обеспечивает лучшее отделение трансплутониевых элементов от редкоземельных, чем описанный выше катионообменный метод. Примером практического применения анионообменного метода служит отделение прометия от америция, которое очень трудно осуществить другими способами. Полное разделение этих элементов достигается элюированием ЪМ тиоцианатом аммония [96]. [c.345]

    Разделение суммы всех элементов периодической системы ионообменным методом в одном цикле невозможно, поэтому необходимо предварительное разделение элементов на группы. Такое разделение может быть выполнено общепринятыми аналитическими методами. В ряде случаев можно пользоваться специальными методами для отделения некоторых групп элементов. Например, удобно отделяются редкоземельные элементы, образующие нерастворимые фториды, оксалаты и гидроокиси цирконий и гафний можно отделить в виде BaZr(Hf)F6 после осаждения фторидов редкоземельных элементов. Некоторые группы элементов можно выделить экстракционными или ионообменными методами и т. д. [c.400]

    В последние годы для группового разделения редкоземельных и трансплутопиевых элементов, а также для отделения кюрия от америция находит применение экстракционный метод. Пеппард и Грей [496] предложили метод группового разделения и отделения кюрия от америция экстракцией ТБФ из азотнокислых растворов, содержащих в качестве высаливателя NaNOs. Разделение америция и кюрия экстракцией ТБФ из водных растворов, содержащих высаливатель Mg(N03)2, было описано также Яковлевым и Косяковым [426]. [c.365]

    Различная растворимость ферроцианидов иттрия и редкоземельных элементов используется для их разделения методом фракционного переосаждення [210—212, 530, 670, 985]. Фильтрат после отделения цериевой группы подкисляется HNOg и обрабатывается разбавленным раствором K4[Fe( N)g], причем редкоземельные металлы выделяются в осадок, а иттрий, вследствие большей растворимости его железистосинеродистого производного, остается в растворе. Для количественного отделения иттрия необходимо-4—5 фракционных переосаждений [670]. Для разделения редкоземельных элементов в форме их ферроцианидов предложен также метод, основанный на различной растворимости их железистосинеродистых солей в алкил- или ариламинах [1190]. [c.281]

    Предложенное Блазиусом и Бокком в качестве примера количественное отделение Си от N1, 2п, Со и М , разумеется, не является примером предпочтения этого метода. Кроме того, разделение возможно лишь для таких пар ионов, устойчивость комплексов которых весьма близка, как, например. Со и 2п (ср. разд. 6.1.2.3.1.1.) или ионы стоящих рядом редкоземельных элементов (Рг и N(1 ср. разд. 6.1.3.1.3). [c.239]

    При отделении [87, 88] миллиграммовых количеств от большого количества примесей, в том числе и редкоземельных элементов (РЗЭ), был использован ионообменный метод, основанный на поглощении хлоридных комплексов Се (IV), Np (IV), Рп (IV), ТЬ (IV), Ъх (IV) и Ре (III) в колонке с анионитом дауэкс-А-1. Редкоземельные и транснлутониевые элементы в этих условиях не образуют устойчивых хлоридных комплексов и поэтому в колонке не задерживаются. Дальнейшее разделение Аш и РЗЭ проводится с учетом соотношения количеств лантана и америция в смеси. При небольшом содержании Аш и значительно большем количестве Ьа может быть использован метод экстракции америция в виде внутриком-плексного соединения пз водного раствора с pH 3,7 бензольным раствором теноплтрифторацетона. Прп наличии больших количеств америция наиболее пригоден для разделения метод фильтрации через колонку с катионитом с последующим элюированием водно-сппртовым раствором НС1. [c.209]

    Важной и далеко еще не разрешенной задачей является отделение и очистка продуктов реакций. Часто труднее извлечь готовый продукт из реакционной смеси, чем его получить. В последние годы в этом направлении достигнуты большие успехи, главным образом благодаря применению сорбентов, молекулярных сит, ио-нообменников, хроматографии. Тем не менее, теория и практика разделения физическими методами остается одной из актуальных задач теоретической и прикладной химии. Примером важности этой проблемы могут служить огромные усилия и затраты, вкладываемые в выделение тяжелой воды из природной, разделение изотопов урана и т. д., а также в разделение редкоземельных элементов, приобретающих быстро возрастающие применения. [c.494]

    До 1945 г. разделение тре1хвалентных редкоземельных элементов было трудоемким процессом. Все методы разделения основывались на многократно повторяющихся процессах фракционирования, т. е. на фракционном осаждении, разложении, кристаллизации и т. д. Для того чтобы получить соли редкоземельных элементов приемлемой чистоты, эти процессы повторялись сотни и тысячи раз. Конечно, в тех случаях, когда редкие земли можно окислением или восстановлением перевести в другое, отличное от трехвалентного, состояние, могли быть использованы другие общепринятые химические методы для отделения окисленных или восстановленных элементов от других трехвалентных редкоземельных элементов. Заслуживают особого внимания ионные состояния Се ", 5т , Ей и В тех случаях, [c.376]


Смотреть страницы где упоминается термин Редкоземельные элементы методы отделения и разделения: [c.6]    [c.291]    [c.163]    [c.98]    [c.277]    [c.303]    [c.344]    [c.397]    [c.78]    [c.277]    [c.98]    [c.328]    [c.146]    [c.146]    [c.267]   
Фотометрическое определение элементов (1971) -- [ c.312 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения

Методы разделения

Элементы редкоземельные

для разделения редкоземельных



© 2025 chem21.info Реклама на сайте