Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмия хлорид, определение воды

    Природа вещества может играть важную роль в процедурах отбора, хранения, химической обработки перед анализом, правильного определения и оценки результатов (включая токсичность вещества или возможные поправки). Так, свинец может находиться в воздухе вблизи автострад в виде газа, аэрозоля и твердого вещества, в виде металла, оксида, хлорида, бромида, карбоната, сульфата, фосфата и др., а также в виде алкилсвинца и других металлорганических производных. Кадмий присутствует в воде в виде ионов, неорганических и органических соединений, металла, адсорбированного на твердых примесях или осажденного в виде покрытия, а также в виде включений в твердых биологических материалах или в кристаллических структурах. [c.582]


    Оборудование и реактивы. Установка для определения фосфористого водорода (рис. 31). Иод (0,01 н. раствор). Тиосульфат натрия (0,01 и. раствор). Крахмал (0,5%-ный раствор). Хлорид кадмия. Уксусная кислота (80— 90%). Ацетат натрия. Дистиллированная вода. [c.107]

    Ход определения. Колбу б заполнить водой, предварительно насыщенной ацетиленом. В цилиндр 2 налить 100 мл раствора ацетата кадмия. Раствор готовить следующим образом 22 г хлорида кадмия растворить в 1 л воды, прибавить 10 мл раствора уксусной кислоты и 10 г ацетата натрия. В цилиндр 3 налить 100 мл воды, и-образную трубку 1 при помощи резиновой трубки соединить со шлангом редуктора, присоединенного к ацетиленовой наполнительной рамке. Прибор продуть анализируемым ацетиленом и, не прекращая его подачи, сообщить колбу 6 с цилиндрами 3 и 2. Кран капельной воронки 7 при этом должен быть открыт. Колбу быстро перевернуть (в положение, показанное на рис. 31) и пропустить ацетилен со скоростью не более 0,5 л/мин до полного вытеснения воды, стекающей через воронку. Кран закрыть и почти одновременно отсоединить прибор от шланга редуктора, зажав резиновую трубку 5 винтовым зажимом 9. Небольшое избыточное давление ацетилена в приборе выравнять с атмосферным, мгновенно приоткрыв кран капельной воронки 7. [c.107]

    Известны ИСЭ для избирательного определения в воде и воздухе оксидов азота, серы и углерода, а также аммиака, сероводорода, фтороводородной и циановодородной кислот (см. табл. 1У.8 и 9). Разработаны ИСЭ для нескольких десятков ионов, в том числе для фторид-, бромид-, хлорид-, йодид-, циа-НИД-, роданид-, нитрат-, хлорат-, фосфат-, сульфид- и карбонат-ионов, а также для катионов — калия, натрия, серебра, аммония, меди, кадмия, свинца и железа [6, 10, 15]. [c.349]

    Возможность прямого определения некоторых катионов с использованием биметаллических электродов платина—вольфрам в последнее время изучали Буданова и Платонова [5]. Определение свинца, меди, цинка, никеля, кадмия, олова и магния про-водят титрованием указанных растворов в аммиачном растворе раствором комплексона в присутствии тартрата и указанной биметаллической системы электродов. Косвенные определения проводят обратным титрованием избытка комплексона раствором хлорида железа (Ш) или нитрата свинца в присутствии платино вого электрода или электродной пары платина—вольфрам. Эти ме- [c.387]

    Ход определения. Навеску 0,5 г анализируемого пигмента растворяют при нагревании в соляной кислоте с добавлением нескольких капель азотной кислоты. После удаления сероводорода кипячением раствор охлаждают, немного разбавляют и отфильтровывают нерастворившийся остаток. Объем фильтрата доводят в мерном цилиндре емкостью 500 мл до метки. Затем отбирают пипеткой 50 мл полученного фильтрата, приливают 100 мл воды и подщелачивают добавлением 10—15 мл 6 н. раствора аммиака. Суммарное содержание обоих элементов определяют титрованием комплексоном по эриохрому черному Т. В оттитрованный раствор добавляют затем небольшое количество купраля и через 5 мин. титруют 0,1 М раствором хлорида магния. Израсходованное на титрование количество комплексона соответствует содержанию кадмия. [c.497]


    Описан портативный полярограф для определения нитратов в воде [130]. Волны NOs возникают на фоне солей Zr и U . Описан новый вольтамперометрический метод определения НОз" на уровне ppb [131] с применением электрода из пиролитического графита. Каталитическая волна NO3 наблюдается при потенциале —1,0 В относительно НКЭ после предварительного осаждения на электроде металлических кадмия и меди. Определению не мешают ионы железа, хлориды, сульфаты и органические соединения мешает нитрит (восстанавливается в тех же условиях). Градуировочный график линеен в интервале 10- — 10- М (62 ppb — 62 ppm). [c.137]

    Изучено разделение хлоридов цинка и кадмия с помощью октанола-2 [237]. Данные по распределению хлорида, бромида и йодида ртути (II) между водой и бензолом использованы для определения констант образования комплексных галогенидов ртути [208]. Устойчивость комплексов растет от хлорида к йодиду. [c.16]

    Определение. Газ пропускают через две поглотительные склянки (типа склянок Дрекселя), содержащие по 15 мл раствора хлорида кадмия, по 2 мл раствора карбоната натрия и по 25—30 мл воды, со скоростью 10—15 л/час. [c.186]

    В аналитической химии соединения лития применяют для самых различных целей. Карбонат лития используют при спектральном анализе различных объектов в качестве буфера [904]. Метаборат лития применяют как плавень при анализе силикатов [924]. Алюмогидрид лития используют для определения активного водорода в анализе органических веществ [479]. Хлорид лития находит применение при потенциометрическом титровании в неводных средах [856] и косвенном методе определения фтора [686]. Электроды из литиевого стекла используются для измерения pH в широком интервале (1,0—12,5) [162]. Ферроцианид лития применяют при качественных реакциях для открытия кадмия [201], а кобальтинитрит лития — для определения калия. Легкость обнаружения лития и его количественного определения спектральными методами позволяет его использовать для изучения кинетики передвижения масс воды (инжекционный метод разбавления [638]). [c.25]

    На результаты вольтамперометрического определения ртути существенно влияет состав анализируемых растворов и вод. Особенно сильное воздействие оказывают некоторые лиганды-комплексообразователи — тио-карбамид, анионы нитрил триацетата и др. Мешают также хлориды при концентрациях > 1-10 М, бромиды — > МО М, иодиды и цианиды при содержании > 1 10 М [60]. Изучено поведение ртути, теллура и кадмия в условиях ИВА и хронопотенциометрии на стеклоуглеродном электроде и предложен метод их совместного определения в природных пресных водах 73]. Минимальная определяемая концентрация ртути в этом методе — 1.9 10" моль/л, интервал концентраций — л 10" - л 10" моль/л. [c.121]

    В газе определяли сероводород, меркаптан, сероокись углерода и сероуглерод. Для этого из газа, отсасываемого в точках 14 (рис. 2), выделяли воду, деготь, аммиак и нафталин в аппаратуре, показанной на рис. 6. Часть очищенного газа пропускали для поглощения сероводорода и меркаптана через дрексели, наполненные 10 %-ным раствором d lj и 0,1 н. раствором карбоната натрия в отношении 10 1 сероокись углерода и сероуглерод осаждались в виде калийэтилмоно- и калийэтилдитиокарбонатов в двух следующих дрекселях, наполненных спиртовым раствором едкого кали (10 %-ный раствор КОН в 95%-ном спирте). Часть газа (//) пропускали через дрексели с подкисленным раствором хлорида кадмия (0,3% НС1), в которых осаждался только сероводород в виде сульфида кадмия. Газ отсасывали из отводящей трубы водоструйным насосом, к которому был присоединен газовый счетчик. При этом скорость отсасывания следовало поддерживать постоянной. Для определения количества и происхождения серы в газе в зависимости от продолжительности коксования, установки для адсорбции сернистых соединений сменяли каждые 15 мин. и определяли сернистые соединения, образовавшиеся за этот период времени. Для этого подготавливали второй ряд дрекселей и переключали ток газа после указанного времени. Для перевода осадков в сульфат бария их растворяли в соляной кислоте в специальном приспособлении. Образующийся сероводород при продувании азотом пропускали через раствор перекиси водорода. [c.58]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]


    Определение в виде В1Р04 (количество висмута до 250 мг). Фосфат висмута В1РО4 — белый, тяжелый кристаллический осадок, практически нерастворимый в воде и разбавленной азотной кислоте и вполне устойчивый при прокаливании. Сульфат- и хлорид-ионы в небольших количествах соосаждаются и их надо предварительно отделить, так же как ионы свинца, циркония и других элементов, образующих нерастворимые фосфаты в разбавленных растворах кислоты. Кадмий мешает в незначительной степени, натрий, калий, магний, кальций, цинк и медь не мешают. [c.276]

    Прямая потенциометрия находит применение при определения pH растворов, а также многих ионов с использованием ноносв лективных электродов. В анализе природных вод и питьевой во Ы ионоселективные электроды применяют для определения кадмия меди, свинца, серебра, щелочных металлов, бромид-, хлорид- цианид-, фторид-, иодид- и сульфид-ионов . Применению этил электродов препятствует большое число мешающих влияний, по этому в анализе сточных вод ими рекомендуется пользоваться с осторожностью, постоянно сверяя получаемые результаты с ре зультатами других методов определения. [c.18]

    Определение проводят так же, как и при анализе неочищенной сточной воды, но со следующими изменениями. Взамен насыщенного раствора хлорида цинка рекомендуется применять такой же раствор хлорида кадмия, так как последний лучше отделяет Её (СЫ). Поскольку в очищенной сточной воде присутствуют в значительных количествах цианаты (до 0,5 г/л), образовавшиеся в результате окисления цианидов и роданидов, они мешают опреде-лейию, образуя с хлоридом железа(1П) соединение желтого цвета. Для устранения их влияния конечное фотометрическое определение следует проводить не при X 460, а при >1, = 490 нм. Чувствительность метода тогда несколько снижается, но влияние циан,й тов устраняется полностью.  [c.421]

    Ход определения по Грёбелю и Шнейдеру [134]. Е> 5—10 мл воды растворяют такое количество анализируемого препарата, чтобы оно соответствовало 250—300 л-гг амиде пиридина, нагревают до кипения и добавляют 20 мл 0,25 М раствора осаждающего реактива (5 г хлорида кадмия и 65 г роданида аммония в 100 мл воды). После прибавления 2 капель раствора метилового красного нейтрализуют 1 н. раствором едкого натра и раствор с осадком оставляют на 1,5—2 час. Затем фильтруют через стеклянный тигель Л 3 и трижды промывают порциями по 5 мл жидкости для промывания (см. примечание). Осадок растворяют в 5 мл концентрированного раствора аммиака, отсасывают и тигель промывают, пропуская через него еще 50 мл воды. После добавления эриохрома черного Т и буферного раствора (аммиак и хлорид аммония) титруют кадмий обычным способом. Если в таблетках присутствует одновременно крахмал, то авторы рекомендуют сначала прокипятить пробу анализируемого вещества в течение 10 мин. с разбавленным раствором соляной кислоты. После нейтрализации раствора поступают далее, как указано выше. [c.514]

    Спектрофотометрическое определение иода, выделяющегося при взаимодействии иодата с иодидом в кислых растворах, можно применить как метод определения иодата. Ламберт с сотр. [17, 18] разработали кадмий-иодидкрахмальный реагент, в котором db выступает в качестве источника иодид-ионов. Этот реагент использовали и в более поздних работах [19]. Как было найдено, нитрит мешает определению, но его можно удалить введением сульфаминовой кислоты. Для определения окислителей в воде плавательных бассейнов применили реагент лейкооснование кристаллического фиолетового [4,4, 4"-метилидентрис(М,Ы-диметиланилин) и хлорид ртути [20] метод можно применить для определения иода, выделяющегося по реакции иодата с иодидом. Хлорид ртути(II) является катализатором реакции. [c.380]

    Полярографический метод применяют для определения хлорид-ионов в самых разнообразных объектах в титане [350], тантале 1801], селене [64], уране [688] и его солях [426], сульфате цинка и цинковом электролите [207], монокристаллах ( d r2Se4) [91], люминофорах на основе сульфидов кадмия и цинка [223, 224], кислотах (серной [970, 1068], фосфорной [46, 970], хлорной [970]), в смесях с другими галогенидами [294, 523], полимерах [860], природных водах и солях [90], сточных водах [230, 782], водно-метаноль-ных смесях [737], биологических объектах [436]. [c.109]

    Описанная реакция применена для определения суммарного содержания цинка и кадмия в азотной, бромистоводородной и фтористоводородной кислотах, а также в тартрате калий-натрия (сегнетовой соли). Для создания оптимального значения pH рекомендован гликоколевый буферный раствор, приготовленный из 0,1 н. раствора аминоуксусной кислоты (гликокол), хлорида натрия и 0,1 н. раствора едкого натра. Растворяют 7,585 г гликоколя и 5,85 г хлорида натрия в 1 л дистиллированной воды. На 100 мл раствора гликоколя и хлорида натрия приливают 3 мл 0,1 н. раствора едкого натра. [c.267]

    Семерано [34] разработал метод определения кадмия, индия и таллия в материалах, содержащих цинк в качестве основного элемента. Анализируемое вещество растворяют таким образом, чтобы получить раствор хлоридов с 25%-ной концентрацией цинка, и определяют сумму таллия, индия и кадмия полярографически. Часть раствора выпаривают, но не до полного удаления кислоты, остаток растворяют в таком количестве воды, чтобы получить 50%-ный раствор относительно цинка, снимают полярограмму для таллия и суммы кадмия и индия. Другую часть первоначального раствора встряхивают 1 час с ZnO (нагретого для удаления карбонатов), осадок центрифугируют и определяют кадмий в растворе по высоте волны с учетом содержания таллия. Осадок растворяют в НС1 и определяют индий. [c.88]

    Определение. Анализируемый воздух (5—10 л) пропускают через трубочку, заполненную 0,2—0,4 г чистой, промытой эфиром ваты, и через последовательно соединенный с этой трубочкой поглотительный сосуд, в который налито 5 мл ацетона. По окончании пропускания исследуемого воздуха ацетон из поглотительного сосуда сливают в мерный цилиндр на 10. нл. Поглртитель-ный сосуд ополаскивают малыми порциями ацетона, которыми доводят объем пробы до 7 мл. Вату в трубочке промывают серным эфиром, который собирают в другой мерный цилиндр. Экстрагируют эфиром до тех пор, пока объем жидкости в мерном цилиндре достигнет 10 мл. Половину полученных растворов (3,5 мл ацетонового раствора и 5 мл эфирного раствора) помещают в реакционную колбочку для сжигания и полностью отгоняют растворитель на водяной бане. После удаления растворителей в колбочку прибавляют 2. чл 12%-ного раствора двухромовокислого калия в концентрированной серной кислоте (уд. вес 1,84). Для очистки этой смеси от хлористого водорода и хлоридов в нее предварительно, при нагревании, пропускают воздух, который проходит через натронную известь и концентрированную серную кислоту. Колбочку постепенно нагревают на парафиновой и"ли масляной бане до 130°. До нагревания ее закрывают прищлифованной пробкой, в которую впаян барботер для воздуха и отводная трубка, достающая до дна пробирки-приемника. В этот приемник заливают 15 мл заранее приготовленного вод-)Юго 0,5%-ного раствора иодистого кадмия, содержащего 0,2% крахмала (раствор до употребления хранится в хорошо закупоренной склянке в темном. месте). Барботер соединяют с промывной склянкой, в которую налита серная кислота, и с трубкой, заполненной гранулированной натронной известью. Через эту очистительную систему и присоединенный к ней реометр, при нагревании реакционной колбочки, из резиновой камеры пропускают воздух со скоростью 15—20 мл в минуту. Очищаясь, воздух поступает в колбочку и далее в пробирку-приемник, содержащую раствор иодистого кадмия. Посинение раствора в приемнике обычно начинается тогда, когда температура в бане достигнет 80°. При этой температуре начинается разложение гексахлорана, сопровождающееся выделением свободного хлора. Продолжительность процесса разложения 20—30 минут. Чтобы установить конец процесса разложения, по истечении указанного времени следует сменить пробирку с раствором на другую. Если посинение свежего раствора не наблюдается, процесс можно считать закопченным. В случае интенсивного посинения раствора задолго до окончания отгонки вследствие выделения большого количества хлора пробирку-приемник с раствором следует заменить на новую. По окончании отгонки хлора пол чсн-ный в пробирках-приемниках раствор сливают вместе и анализируют. Определить концентрацию выделившегося иода в этом растворе можно 1) титрометрически (если выделяется большое количество иода) или 2) колориметрически (при выделении небольшого количества иода). [c.130]

    Тетраметилтиурамдисульфид предложен также для экстракционно-фотометрического определения кобальта [269]. Из галогенидов кадмия, ртути, железа, меди, серебра и некоторых других металлов наиболее устойчивые соединения с тетраметилтиурамдисульфидом образуют иодиды хлориды и бромиды дают непрочные продукты присоединения, разлагающиеся водой [270]. Однако взаимодействие тиурама с платиной(П, IV) приводит к образованию достаточно устойчивых соединений платины(П), содержащих во внутренней сфере нейтральные молекулы тиурама — PtL la и PtLg Ig [271 ]. [c.63]

    Галогениды кадмия бесцветны и легко растворяются в воде (за исключением фторида, который плохо растворяется). Хлорид кадмия и бромид кадмия образуют кристаллы, содержащие кристаллизационную воду фторид и иоди известны только в безводном состоянии. Определениями молекулярных весов в растворах было найдено, что галогениды кадмия обладают склонностью к образованию аутокомплексов, например три молекулы db дают растворимую комплексную соль dl dbla- Поэтому во время электролиза большая часть кадмия перемещается к аноду. [c.700]

    Для количественного определения сосуществующих форм р ной ртути в природных водах разработаны методы селективного i ления металла с использованием восстановителей, обладающих ] эффективностью. Так, последовательное восстановление рас ртути 1) гидроксилам ином и ЭДТА в щелочной среде 2) хлориде ЭДТА в щелочной среде 3) хлоридом олова и хлоридом кадмия в среде, позволило определить соответственно неорганическую рт ганическую и фенилртуть, общую ртуть, включая метилртуть [3( ботан метод дифференцированного определения неорганически ных и метильных форм ртути при использовании в качестве вос( лей хлорида олова, гидразинборана и диметиламиноборана [9, 6 [c.100]


Смотреть страницы где упоминается термин Кадмия хлорид, определение воды: [c.95]    [c.13]    [c.13]    [c.104]    [c.168]    [c.218]    [c.478]    [c.661]    [c.157]    [c.23]    [c.95]    [c.783]    [c.783]    [c.351]    [c.494]    [c.100]   
Акваметрия (1952) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Кадмий определение

Кадмий хлорид

Кадмия ион в воде

Хлорид в воде

Хлориды определение

Хлориды, определение в воде



© 2025 chem21.info Реклама на сайте