Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серии физические свойства

    Основываясь на результатах исследования физических свойств и качественном составе соединения, определяют класс анализируемого вещества. Затем делают качественные реакции на предполагаемые функциональные группы. Допустим, установлено вещество жидкое, бесцветное, не содержит азота, галогенов и серы, хорошо растворяется в воде, имеет нейтральную реакцию, кипит при 78° С. Предположительно такое вещество может быть спиртом, альдегидом, кетоном. Для уточнения делают качественные реакции только на спиртовую, альдегидную и кетонную группы. Следует брать небольшие пробы (0,1— [c.123]


    Неметаллы образованы с помощью неполярной ковалентной связи. Они могут иметь атомную (алмаз, кремний, рафит, черный фосфор) или молекулярную (кристаллическая сера белый фосфор Р , галогены, в твердом состоянии - иод при и.у, бром Вг при низких температурах) кристаллическую решетку. Поэтому физические свойства неметаллов весьма различны. [c.147]

    Физические и химические свойства. Ванадий, ниобий и тантал-металлы светло-серого цвета, характеризующиеся кубической объемноцентрнрованной кристаллической решеткой. Значения физических свойств ванадия, ниобия и тантала приведены в табл. 14. [c.276]

    В катализаторе определяют содержание серебра, щелочноземельных металлов, щелочных металлов и таких вредных примесей, как тяжелые металлы, сера и галогены. Исследование физических свойств включает измерение поверхности методом БЭТ, обычно по криптону из-за малой площади поверхности. Для измерения пористости при контроле качества катализатора можно применять ртутную порометрию, несмотря на известную тенденцию серебра к амальгамированию, так как этот процесс сильно замедляется на окисленной поверхности. Состав поверхности катализаторов определяется современными методами, связанными с использованием высокого вакуума. Из них наиболее важны рентгеновская фотоэлектронная спектроскопия (РФЭС), масс-спектрометрия вторичных ионов (МСВИ) и электронная оже-спектроскопия (ЭОС). [c.240]

    Вещества и их изменения. Предмет химии. Каждый отдельный вид материи, обладающий при данных условиях определенными физическими свойствами, например, вода, железо, сера, известь, кислород, в химии называют веществом. Так, сера — это хрупкие кристаллы светло-желтого цвета, нерастворимые в воде плотность серы 2,07 г/см , плавится она при 112,8 С. Все это — характерные физические свойства серы. [c.13]

    Природная, или самородная, сера представляет собой твердое кристаллическое вещество желтого цвета. Она содержит элементарную серу с примесями мышьяка, селена, теллура и некоторых других Металлов. Сера кристаллизуется в двух системах— ромбической и моноклинной существует также аморфная сера, образующаяся три быстром охлаждении расплава серы. Физические свойства этих модификаций серы различны  [c.242]

    Физические свойства. В соответствии с характером изменения структуры и типа химической связи закономерно изменяются и свойства простых веществ — их плотность, температура плавления и кипения, электрическая проводимость и др. Так, аргон, хлор р,г/см и сера в твердом состоянии являются диэлектриками, [c.235]


    Четырехфтористая сера представляет собой бесцветный газ с резким запахом, напоминающим запах хлора и хлоридов серы ". Физические свойства 5р4 приведены ниже "  [c.40]

    Нейтральные смолы — полужидкие, а иногда почти твердые, вещества темно-красного цвета, плотностью около единицы. Они растворяются в петролейном эфире, бензоле, хлороформе и четыреххлористом углероде. В отличие от асфальтенов нейтральные смолы образуют истинные растворы. Кроме углерода и водорода в состав смол входят сера, кислород и иногда азот. Углеводороды находятся в смолах в виде ароматических и нафтеновых циклов со значительным количеством (40—50 вес. %) боковых парафиновых цепей. Весовое соотношение углерод водород составляет примерно 8 1. Сера и кислород входят в состав гетероциклических соединений. Смолы химически не стабильны. Под воздействием адсорбентов в присутствии кислорода частично происходит окислительная конденсация их в асфальтены. Физические свойства смол зависят от того, из каких фракций нефти они выделены. Смолы из более тяжелых фракций имеют большие плотность, молекулярный вес, красящую способность и содержат больше серы, кислорода и азота. Достаточно добавить в бензин 0,005 вес. % тяжелой смолы, чтобы придать ему соломенно-желтую окраску. [c.32]

    Нефти различных месторождений и даже в пределах одного месторождения могут значительно отличаться друг от друга по физическим свойствам (плотность, вязкость) и фракционному составу, а также по содержанию серы, парафина, смол и групповому химическому составу. [c.75]

    О — S — Se — Ро структурные изменения и ослабление ковалентности связи Э — Э соответствуют изменению физических свойств так, кислород и сера — диэлектрики, селен и теллур — полупроводники, а полоний обладает металлической проводимостью. [c.337]

    Свойства. В ряду Se —Те —Ро усиливаются металлические свойства. Если сера — диэлектрик, то селен и теллур имеют как неметаллические, так и полупроводниковые и металлические модификации, а полоний по физическим свойствам похож на свинец и висмут.  [c.456]

    Если предположить, что из физических свойств жидкости для турбин имеет значение только ее плотность, то в качестве характеристики данной серии турбин достаточно иметь две сле-дующ,ие зависимости  [c.73]

    Исследования продуктов взаимодействия органических соединений серы с порошком железа в интервале температур 50—170°С позволили скоррелировать противозадирный эффект этих соединений с их способностью образовывать в ходе реакции вещества, обеспечивающие сульфидирование стальной поверхности [134]. Эти исследования не совпали с гипотезой о механизме противоизносного действия, высказанной Форбсом. Так, было установлено, что противоизносная эффективность соединений определяется физическими свойствами пленок, образованных этими соединениями при адсорбции на металлической поверхности и скоростью образования этих пленок, а не легкостью, разрыва связей 8—8, как это утверждалось ранее и было высказано Форбсом. [c.133]

    Смолистые вещества присутствуют в топливах в малых количествах (сотые и десятые доли процента), возрастающих с моле-кулЯ рной массой топлива. Тем не менее они оказывают значительное влияние на эксплуатационные свойства топлив и надежность работы двигателей, поскольку по химической природе и физическим свойствам резко отличаются от углеводородов топлива. Под смолами в топливах понимают окрашенные в темно-коричневый цвет полярные вешества сложного строения,, в молекулы которых входят кроме углерода и водорода гетероатомы — кислород, азот, сера — порознь или совместно (в циклы или в мости-ковые связи). [c.166]

    Показаны возможности определения и прогнозирования содержания САВ по основным физико-химическим характеристикам нефтей плотности, молекулярной массе, коксуемости, вязкости, температуре застывания, содержанию серы, выходу фракций 200— 300 °С. Однако нефти отличаются большим разнообразием химического состава и физических свойств, поэтому разработать единые математические зависимости, охватывающие различные характеристики нефтей, практически невозможно. [c.266]

    В нефтепереработке наибольшее значение имеет контроль лабораторный, заключающийся в определении химического состава и физических свойств проверяемых веществ. К операциям лабораторного контроля относятся определение плотности, фракционного состава, вязкости, температуры вспышки, кислотности, содержания серы и др. [c.105]

    Медь, получаемая из сульфидных руд пирометаллургическим способом, содержит около 1 % примесей — таких, как никель, сурьма, свинец, теллур, селен, висмут, мышьяк, сера, золото, серебро, а в ряде случаев и металлы платиновой группы. Наличие в меди даже небольших количеств примесей сильно понижает ее физические свойства (например, электрическую проводимость, пластичность и др.). Для получения меди высокой чистоты из пирометаллургической меди и попутного извлечения из нее благородных металлов в продукт, удобный для дальнейшей переработки, ее подвергают электрохимическому рафинированию. В настоящее время около 90 % всей добываемой меди обрабатывают таким образом. [c.120]


    Уменьшение потенциала ионизации оказывает главное влияние на уменьшение электроотрицательности в рассматриваемой группе элементов. В связи с этим интересно отметить, что сера и селен сходны во многих отношениях, тогда как теллур обладает значительно меньшей электроотрицательностью. Отметим, что легкость восстановления свободного элемента до Н Х существенно изменяется в пределах группы. Кислород очень легко восстанавливается до состояния окисления — 2, тогда как восстановительный потенциал теллура оказывается довольно сильно отрицательным. Эти факты указывают на усиление металлических свойств у элементов группы 6А с возрастанием атомного номера. Их физические свойства обнаруживают соответствующие закономерности. Группа 6А начинается с кислорода, образующего двухатомные молекулы, и серы-желтого, непроводящего электрический ток твердого вещества, которое плавится при 114" С. Ближе к концу группы находится теллур с металлическим блеском и низкой электропроводностью, который плавится при 452°С. [c.301]

    Однако в отличие от углерода атомы кремния как элемента третьего периода л-связей друг с другом образовывать не могут. Поэтому для кремния не характерна аллотропия, ои образует одну алмазоподобную модификацию, где атомы кремния связаны только а-связями за счет перекрывания 5рЗ-гибрид-ных орбиталей. Такой кристаллический кремний представляет собой темно-серое металловидное тело, обладающее электропроводностью, т. е. кремний по физическим свойствам близок к металлам. Так называемый аморфный кремний (коричневый порошок) не является аллотропной модификацией. Он представляет собой мелкокристаллическую форму алмазоподобной модификации. [c.249]

    По физическим свойствам кислород, сера, селен и теллур представляют собой типичные неметаллы кислород при обычных условиях — газ, остальные элементы хруп- [c.68]

    Следует обратить внимание на особенность твердого состояния, заключающуюся в том, что чистое вещество может образовывать несколько кристаллических фаз. Такие фазы имеют одинаковый химический состав, но различаются по своим физическим свойствам. Например, существуют пять различных фаз льда, белое и серое олово, а-, у- и б-железо и т. д. [c.130]

    Хотя еще не для всех элементов были известны атомные веса, все же для некоторых небольших групп элементов уже в XIX веке было замечено большое сходство химических и физических свойств. В 1829 г. Иоганн Вольфганг Деберейнер сделал первую существенную попытку показать связь между химическими свойствами элементов и их атомными весами. Он заметил, что некото рые сходные элементы можно объединить по три в группы, которые он назвал триадами. Интересной особенностью этих триад было то, что атомный вес среднего члена триады был очень близок к среднему арифметическому из атомных весов двух остальных членов триады. Такую триаду составляли, например, хлор, бром и иод. Для нее среднее арифметическое из атомных весов хлора и иода 81 очень близко к атомному весу брома. Другие триады сера, селен, теллур литий, натрий, калий. В каждом случае можно видеть, что указанное соотношение между атомными весами хорошо соблюдается. [c.80]

    Так как химические реакции приводят к образованию новых веществ, эти реакции должны сопровождаться изменениями физических свойств. Более того, снять эти изменения можно, только обратив химическую реакцию. Чтобы узнать, осуществилась ли химическая реакция, химики ищут изменений физических свойств вещества. Так, когда углерод сгорает в кислороде с образованием двуокиси углерода, исчезает твердое черное вещество — углерод, и его место занимает бесцветный, не обладающий запахом газ, который не горит. Если металлические опилки смешать с порошком серы, физические свойства как серы, так и железа сохраняются неизмененными. Более того, смесь можно составить в любом отношении серы к железу. Если же эту смесь сильно нагреть, происходит химическая реакция. Продукт реакции ферро(П)сульфид, РеЗ, не напоминает ни железа, ни серы и индис ерентен к магниту. [c.60]

    При высоких и сверхвысоких давлениях изменяются физические свойства веществ. Так, в ряде случаев вещества, которые при обычных давлениях являются изоляторами (например, сера), при сверхвысоком давлении становятся полупроводниками. Полупроводники же при 2- 10 —5- 10 Па могут переходить в металлическое состояние. Подобные переходь[ изучены у теллура, иода, фосфора, ряда соединений. Расчеты показывают, что дальнейшее повышение давления металлизует все вещества. Интересные превращения претерпевает иттербий (УЬ), При давлении до 2- 10 Па иттербий — металл, при 2-Ю —4-10 Па — полупроводник, выше 4-10 Па— нова металл. [c.124]

    Помимо этого, соотношения, в которых присутствзгют инородные элементы (сера, кислород, азот и др.), отражаются на процентном соотношении неуглеводородных компонентов в тяжелых фракциях и приводят к дополнительному усложнению. Допуская для простоты, что нефтяные компоненты содержат не более одного инородного атома, следует считать, что с увеличением среднего молекулярного веса фракций действительное процентное содержание неуглеводородных компонентов. Соответствующее определенному содержанию инородных элементов, растет. В такой большой молекуле присутствие инородного атома не оказывает существенного влияния на химические и (или) физические свойства, определяемые преимущественно углеродным характером молекулы, поэтому изучение состава высших фракций очень усложняется вследствие присутствия неуглеводородных соединений. [c.364]

    До сих нор еще нет хорошего объяснения изменений химического состава, которое, возможно, вызывает изменения физических свойств. Известно, как отмечалось ранее, что состав продуктов не многим отличается от состава остатка, что отношение углерода к водороду увеличивается по мере того как вещество делается менее жидким это можно легко объяснить увеличением количества циклических структур в молекуле. Однако, как было показано Химманом и Барнетом (Hillman and Barnett [26]), это увеличение соотношения углерода и водорода наблюдается одновременно с увеличением количества серы, азота и кислорода. Данные табл. XII-3 и ХП-4 показывают, что такое увеличение содержания посторонних элементов встречается во всех изучавшихся случаях, кроме содержания серы в крекинг-остатке. Следует признать, что анализы были сделаны в большей степени на асфальт содержащих остатках, чем на природных асфальтах, но данные все же убедительны. [c.540]

    Вычисление функций распределения времени пребывания в реакторе с учетом всех перечисленных факторов, как правило, невозможно часто функцию распредедения получают экспериментально, подавая на вход реактора импульс трассирующего вещества или другой переменный сигнал и измеряя концентрацию трассирующего вещества на выходе реактора как функцию времени. Однако и в этом случае получаемую функцию распределения стремятся выразить через небольшое число параметров (по возможности имеющих непосредственный физйческий смысл), зависимость которых от гидродинамики и физических свойств потока можно было бы найти в поставленной серии экспериментов. [c.207]

    От химического состава шлакового расплава зависят его физические свойства — вязкость, плавкость, теплосодержание, тепло-проводнссть, электропроводность, поверхностное натяжение. Эти свойства шлакового расплава влияют на интенсивность размывания огнеупорной футеровки печи и растворения ее в шлаке интенсивность теплопередачи от пламени к ванне печи, от которой зависит скорость нагрева ванны и производительность печи на скорость поступления в ванну кг.слорода, а следовательно, и на скорость окисления примесей. В зависимости от этих свойств шлак может быть лучшим или худшим защитным покровом, предохраняющим от поглощения жидкой ванной азота, водорода, серы из пламени в реакционном пространстве печн. [c.81]

    Структурные изомеры различаются пространственным расположением атомов, другими словами, между ними имеется химическое различие. В химии координационных соединений приходится встречаться со многими типами структурной изомерии. Два из них указаны на рис. 23.8 в качестве примера. Изомерия положения представляет собой относительно редко встречающийся, но интересный тип изомерии, который наблюдается в тех случаях, когда какой-нибудь лиганд может координироваться двумя различными способами. Например, нитрит-ион NOj способен координироваться либо через атом азота, либо через атом кислорода (рис. 23.9). Koi да он координируется через атом азота, лиганд NOj называют нитро , а когда он координируется через атом кислорода, его называют нитрито . Изомеры, показанные на рис. 23.9, отличаются по своим химическим и физическим свойствам. Например, изомер, координированный через азот, окрашен в желтый цвет, а изомер, координированный через кислород,-в красный. К числу других лигандов, способные координироваться через различные донорные атомы, относится тиоцианат S N он можо координироваться либо через азот, либо через серу. [c.380]

    После формования оксида алюминия его гранулы прокаливают для удаления влаги и повышения прочности. Большинство производителей катализатора отмечают, что используемый в качестве 1 0сителя оксид алюминия должен обладать определенными физическими свойствами. Среди наиболее важных характеристик— площадь поверхности и объем пор. Прокаленные носители из оксида алюминия, как правило, имеют удельную поверхность 200—400 м /г. Поверхность пор должна составлять определенную часть от общей поверхности, что обеспечивает их доступность для молекул газообразных реагентов. По-видимому, наибольшее значение имеют поры диаметром 8—60 нм [22]. Носитель катализатора должен быть очень устойчив к истиранию, чтобы полученный катализатор выдержал операции пропитки, сушки, транспортировки, загрузки в трубки реактора и условия реакции. Размер гранул катализатора также весьма важен, так как влияет на насыпную плотность катализатора в трубках реактора, а следовательно, на активность, приходящуюся на единицу объема реактора. Носитель катализатора контролируют по его физическим свойствам и обычно анализируют на содержание ряда примесей, в частности железа, промотирующего образование побочных продуктов, оксида кремния и серы. [c.272]

    Физические и химические свойства. Хотя олово и свинец и представляют собой металлы, в свободном состоянии типичные для металлов свойства выражены у них довольно слабо. Кристаллическое олово существует в разных полиморфных видоизменениях. Низкотемпературное видоизменение, называемое серым оловом, характеризуется кристаллической решеткой атомного, т. е. неметаллического, 1нпа. Видоизменение, называемое белым оловом, устойчивое п])н телятературе выше 13,2°С, характеризуется кристаллической решеткой металлического типа. Видоизменения олова сильно отличаются друг от друга по плотности — серое олово имеет значительно меньшую плотность (5,75 г/см ). В связи с этим при охлаждении обычное белое олово переходит в серое, наблюдается значительное увеличение объема и разрушение оловянных изделий (наиболее ннтенсивгюе нри сильных морозах ниже — 30°С). Значения физических свойств олова и свинца ириведены в табл, 41. [c.340]

    Кокс сланцевый (КС) получают при газификации горючих сланцев, содержащих около 30% органической массы, в газогенераторах. Кокс из сланцевой смопы является сырьем для графитированных электродов. По некоторым показателям, таким, как низкое содержание серы, бора, почти полное отсутствие ванадия, он превосходит нефтяной кокс. По химическим и физическим свойствам сланцевый кокс также отличается от нефтяного, [c.92]

    Основные показатели химического состава нефтяных остатков строго контролируются гостовскими нормативами. При использовании, например, нефтяных остатков в качестве топлив (топочные мазуты) требуется строго выдерживать нормы по следуюпщм показателям отношение С/Н, содержание серы и зольных элементов, а также значения таких физических свойств, как вязкость и температура застывания. В связи с повысившимися требова-нпямп по охране окружающей среды сильно возросли требования к допустимой норме содержания серы в остаточных топливах. [c.242]

    Физические свойства дорожных битумов, модифицированных натуральным каучуком, также в значительной мере зависят от типа сырья, из которого получен битум. Уелборн и Бабашек [14] сравнивали два венесуэльских, мидконтинентский и вайомингский битумы. При модификации натуральным латексом и серой они обнаружили большое различие в некоторых важных свойствах этих битумов. Например, введение 1% каучука приводило к увеличению дуктильности при низкой температуре до 28 см в одном битуме и до 150 см в другом. Результаты испытания смесей битумов из различного сырья и натурального латекса с серой приведены в табл. 7.2. [c.227]

    Смолы и асфальтены относятся к высокомолекулярным неуглеводородным соединениям нефти [135,136]. В составе нефти они играют важную роль, определяя во многом ее физические свойства и химическую активность. В состав смол и асфальтенов входят полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомными структурами, содержащими серу, кислород, азот. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, не растворимые в низкомолекулярпых растворителях. Молекулярные массы смол 500-1200, асфальтенов - 1200-1300 [143]. Содержание ароматических углеводородов в нефти изменяется от 5 до 55 %, чаще всего 20-40%. Основную массу ароматических структур составляют моноядерные углеводороды - гомологи бензола. Полициклические ароматические углеводороды (ПАУ), т.е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 % [91]. [c.24]

    Холодная вулканизация заключается в том, что каучук погружают в раствор S2 I2 в сероуглероде нли, чаще (ввиду огнеопасности н токсичности S2),B легком бензине. При itom молекулы каучука присоединяют серу. Еще чаще применяется горячая вулканизация, при которой каучук смешивают с серой и нагревают смесь при 135—140°, обычно непосредственно в прессах, обогреваемых паром. В результате вулканизации физические свойства продукта заметно изменяются он переходит из термопластр чного в высокоэластичное состояние и приобретает нерастворимость в алифатических, ароматических и хлорированных углеводородах. [c.952]

    Степень черноты и поглощательная способность таких запыленных потоков зависят как от эмиссионной и поглощательной способности газовой среды, так и от размеров, концентрации и физических свойств твердых частиц. Непосрелственные измерения монохро.матической прозрачности запыленпых потоков показывают, что такие потоки не являются серыми, а спектральный коэффициент по.глощения зависит от длины волны X. Монохроматическая поглощательная способность запыленного потока уменьшается с ростом длины волны падающего излучения Эта зависимость ослабевает по мере увеличения концентрации пыли в потоке Ц [2]. [c.16]

    Физические свойства. Известно несколько аллотропических модификаций серы. Наиболее изучены ромбическая сера (температура плавления 112,8 С) и моноклииическая (температура-плавления 119° С). При нагревании до 95,6° С Останавливается равновесие  [c.187]


Смотреть страницы где упоминается термин Серии физические свойства: [c.68]    [c.381]    [c.118]    [c.98]    [c.729]    [c.110]    [c.337]   
Белки Том 1 (1956) -- [ c.105 ]




ПОИСК







© 2025 chem21.info Реклама на сайте