Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осушка газов углеводородов

    Проблема скорости массопередачи в неподвижном слое широко исследовалась первоначально в области абсорбции, адсорбции, дистилляции и экстракции. В реакционных системах твердые гранулы обычно имеют меньшие размеры, чем частицы твердых веществ в упомянутых физических процессах, но аналогичные соотношения, по-видимому, применимы и здесь. Псевдоожиженный слой используется в таких физических процессах, как осушка газов или фракционированная адсорбция углеводородов, но его главное применение—в каталитических реакциях. [c.283]


    После осушки газ содержит в основном Нг, СО, несколько процентов СОг, и серусодержа-щие соединения и около 0,3 об.% углеводородов (СН4) [c.178]

    Силикагель находит широкое применение в процессах осушки газов. В последнее время его используют в процессах разделения нефтяных газов, в частности для выделения индивидуальных компонентов из газов нефтепереработки. Применение силикагеля при адсорбционных методах разделения газовых смесей особенно желательно ввиду его резкой избирательности по отношению к непредельным углеводородам. [c.12]

    Если основным потоком является нефть или углеводородный конденсат, содержащий большое количество высокомолекулярных углеводородов (тяжелее октана), то рассчитать однократное испарение очень трудно. Данные о плотности газа недостаточны для последующих расчетов процесса извлечения жидкости. Их недостаточно даже для выбора способа осушки газа, тем более, что обычные изменения температуры и давления влияют на показатели работы последующих модулей. [c.12]

    На рис. 116 представлена схема простейшей холодильной установки с турбодетандером, в котором газ расширяется с 15 до 5,6 кгс/см , благодаря чему получается холод, необходимый для конденсации углеводородов. Основная сепарация сконденсировавшихся углеводородов происходит в сепараторе 5 при —101,1° С. Для предупреждения гидратообразования применяется двухступенчатая осушка газа до точки росы (—18° С) — гликолевая и для окончательного обезвоживания газа — адсорбционная с помощью молекулярных сит. [c.195]

    На установках короткоцикловой адсорбции (КЦА), где в качестве поглотителя применяется силикагель, время проскока пентана составляет 12—20 мин. Метан и этан проскакивают практически мгновенно. Если продолжительность цикла адсорбции превышает 30—40 мин, все углеводороды, кроме наиболее тяжелых, будут вытеснены из слоя. В этом случае происходит лишь осушка газа. Таким образом, показатели адсорбционного процесса определяются продолжительностью цикла адсорбции. Если цикл адсорбции очень короткий, то из газа извлекаются и влага, и углеводороды. Извлечение углеводородов из газа в процессе КЦА снижает затраты на осушку газа или позволяет полностью отказаться от установки осушки. Установки КЦА с большим экономическим эффектом могут быть использованы для очистки газа от углеводородов и воды. Перспективы их применения велики. [c.242]


    Приведенные на рис. 166 значения равновесной влагоемкости Яр в динамических условиях меньше аналогичных значений для системы воздух—адсорбент . Это объясняется тем, что данные рис. 166 относятся к осушке природных газов и учитывают конкурирующее влияние присутствующих в газе углеводородов па адсорбцию паров воды. Эти данные получены па действующей установке после некоторого периода нормальной эксплуатации ее. Таким образом, кривые рис. 166 учитывают также естественное падение влагоемкости адсорбентов в процессе их эксплуатации в спстеме установки осушки газа. [c.248]

    Значение а , полученное в этих расчетах, соответствует влагоемкости адсорбентов при осушке газа, не содержащего примесей, которые могут привести к ненормальной потере адсорбционной активности. Если газ не содержит сернистых соединений, то эта влагоемкость адсорбентов сохраняется в течение нескольких лет эксплуатации установки осушки. Скорость падения адсорбционной активности по воде будет самой малой для молекулярных сит ЗА и 4А, так как тяжелые углеводороды не могут проникать в поры этих осушителей. [c.251]

    Преимущества адсорбционной осушки низкая точка росы осушенного газа большая величина депрессии точки росы в широком диапазоне параметров осушаемого газа компактность (особенно небольших установок) сравнительно низкие капитальные затраты для установок небольшой производительности возможность увеличения производительности за счет пропускания части сырого газа мимо установки и последующего его смешения с осушенным газом, если глубина осушки газа намного ниже, чем установлено нормативами зксплуатации газопровода возможность извлечения из хаза вместе с влагой углеводородов (очистка газа от углеводородов). [c.256]

    Регенерация адсорбента на установках осушки жидких углеводородов отличается от регенерации его в процессе адсорбционной осушки газа. Отличие заключается в основном в способе подвода тепла к адсорбенту. В качестве теплоносителей применяется перегретый водяной пар, природный газ, топливный газ или любой инертный газ (табл. 25). [c.262]

    Искусственным путем теперь изготовляют цеолиты, являющиеся хорошими адсорбентами и обладающие порами постоянного размера (4Л, 5,Л и др). Соизмеримость размера пор с величиной молекул дает возможность использовать такие цеолиты для разделения компонентов газовых смесей и жидких растворов в зависимости от размеров молекул или ионов этих компонентов. Молекулярные сита, как называют такие адсорбенты, применяются для разделения углеводородов, осушки газов и других целей. [c.373]

    Установка тонкой очистки и осушки газов и результаты ее исследования В нефтехимии для очистки отходящих газов от конденсирующихся углеводородов и для сепарации жидких аэрозолей используют различные типы вихревых кожухотрубных теплообменников. На основе опыта промышленной эксплуатации вихревых теплообменников [16] и результатов лабораторных исследований были разработаны конструкция аппарата и установка тонкой очистки газов от механических примесей, аэрозолей и влаги, конденсирующихся паров углеводородов [6, 17]. На однотрубной модели аппарата тонкой очистки воздуха была проведена серия экспериментов. [c.90]

    Молену./ярные сита производятся нескольких классов — диаметром пор около 4,5 и 12 A. Для молекулярных сит характерны высокая адсорбционная емкость нри повышенных температурах и низких концентрация.х извлекаемых компонентов. Молекулярные сита применяются для разделения смесей газов или ншдкостей по размерам молекул (например, для отделения нормальных парафиновых углеводородов от углеводородов изо-строения) для осушки газов и жидкостей для очистки газов и жидкостей от примесей при низкой их концентрации и др. [c.387]

    Процессы адсорбции щироко применяются для очистки е, осушки газов, для разделения смесей газов и паров, например смесей газообразных углеводородов, для улавливания из парогазовых смесей паров ценных органических веществ (бензола, бензина, ацетона и др.), или так называемой рекуперации летучих растворителей. Посредством адсорбции производят также очистку растворов от примесей. [c.713]

    Конденсация воды при охлаждении или сжатии газа приводит к образованию влажной пленки на поверхности металла и к усилению скорости коррозии, особенно в присутствии кислых газов, превращая ее из химической в электрохимическую. Осушка газа значительно уменьшает опасность коррозии, одновременно устраняя ряд неполадок при транспортировании и использовании газа, связанных с замерзанием воды и образованием гидратов углеводородов. [c.171]


    Высокая эффективность диэтиленгликоля (ДЭГ) в качестве абсорбента основана на его гигроскопичности, а незначительная растворимость р легких углеводородах позволяет использовать его также для предотвращения гидратообразования в системах сбора природного газа на установках низкотемпературной сепарации (НТС) газа, впрыскивая его в газовый поток. Осушка газа при помощи ДЭГ позволяет понизить точку росы до —ЗО С. [c.172]

    В нефтегазоперерабатывающей и нефтехимической промышленности адсорбция применяется для отбензинивания природных и попутных углеводородных газов, при разделении газов нефтепереработки с целью получения водорода и этилена, для осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов (бензола, толуола, ксилолов) из бензиновых фракций, для очистки масел, при очистке сточных вод с применением пылевидного активированного угля и т.п. [c.274]

    Адсорбционный способ применяется для онределения состава газов, углеводородного состава различных жидких нефтепродуктов, потенциального содержания масел в нефти. В промышленности он используется для отбензинивания природных и попутных углеводородных газов, выделения из нях пропана и бутанов, разделения газов нефтепереработки с целью нолучения водорода, этилена и других компонентов, для осушки газов и жидкости, выделения низко-молекулярных ароматических углеводородов (бензола, толуола, ксилолов) из соответствующих бензиновых фракций, для очистки масла и парафина и т. д. [c.246]

    Во всех этих случаях газы предварительно подвергают переработке. Даже в тех случаях, когда газ используется как топливо, его нельзя пускать в магистральный газопровод без очистки и осушки. Особенно тш,ательная очистка и осушка газа требуется в тех случаях, когда выделяют индивидуальные углеводороды, используемые для получения нефтехимических продуктов. [c.287]

    При получении этилена из газов пиролиза необходима их очистка от тяжелых углеводородов С4 и выше. Диеновые углеводороды С4 и С5 обладают способностью нолимеризоваться в условиях работы разделительных установок. Образующиеся полимеры забивают поры твердых сорбентов, что снижает эффективность их действия и ухудшает качество получающегося конечного целевого продукта. Удаление диеновых углеводородов целесообразно производить до осушки газа, проводимой с применением твердых сорбентов. [c.307]

    Природный газ подвергается сжижению на специальных установках путем его охлаждения до температуры —162 °С. В состав установок входят следующие блоки и узлы блок очистки газа от диоксида углерода, блок осушки газа, низкотемпературный блок сжижения с узлами компримирования хладагента и сырьевого газа, узел вывода широкой фракции углеводородов и узел получения компонентов хладагента. Расход энергии на таких установках зависит от выбранной технологической схемы [c.128]

    Адсорбция щироко применяется для осущки газов в самых различных целях природного газа для повышения его калорийности, предотвращения образования ледяных пробок в трубопроводах, обеспечения сухих атмосфер в различных производствах и т. д. Для осушки газов чаще всего применяют силикагели, алюмогели, а в последнее время и цеолиты. Благодаря высокой избира тельности цеолитов, обусловленной как молекулярно-ситовым эффектом, так и специфическим сродством к полярным, ароматическим и непредельным соединениям, они используются в промышленности также для разделения газовых смесей этан — этилен, пропан — пропилен, этилен — диоксид углерода, ароматические углеводороды — нормальные парафины, бензол — циклогексан и др. [c.146]

    Для осушки газа и извлечения из него тяжелых углеводородов в газовой промышленности широко применяется абсорбционный процесс. Основными аппаратами абсорбционных установок являются колонные аппараты - абсорберы и десорберы, оборудованные круглыми и желобчатыми тарелками. [c.17]

    Процессы адсорбции широко применяются в промышленности при очистке и осушке газов, очистке и осветлении растворов, разделении смесей газов или паров, в частности при извлечении летучих растворителей из их смеси с воздухом или другими газами (рекуперация летучих растворителей) и т. д. Еще сравнительно недавно адсорбция применялась в основном для осветления растворов и очистки воздуха в противогазах в настоящее время ее используют для очистки аммиака перед контактным окислением, осушки природного газа, выделения и очистки мономеров в производствах синтетического каучука, смол и пластических масс, выделения ароматических углеводородов из коксового газа и для многих других целей. В ряде случаев после адсорбции поглощенные вещества выделяют (десорбируют) из поглотителя. Процессы адсорбции часто сопутствуют гетерогенному катализу, когда исходные реагенты адсорбируются на катализаторе, а продукты реакции десорбируются, например при каталитическом окислении двуокиси серы в трехокись на поверхности платинового катализатора и др. [c.563]

    Осушка газа. Вода является нежелательной примесью углеводородного сырья, в условиях снижения температуры вода образует с углеводородами кристаллогидраты. Повышение давления способствует образованию кристаллогидратов, однако, выше определенной - критической - температуры образование кристаллогидратов уже не наблюдается. Разрушение кристаллогидратов при неизменном давлении происходит при температурах несколько более высоких, чем их образование. [c.86]

    Ряц искусственных цеолитов используется в качестве так называемых. юлекулярных сит. Молекулярные сита поглощают вещества, молекулы которых могут войти в их полости (диаметром 0,3—1,3 нм). Напрг мер, одно из молекулярных сит (с диаметром отверстия 0,35 нм) может поглотить молекулы Н. , О2, N , но практически не поглощает более крупные молекулы типа СН4 или атомы Аг. Молекулярные сита используются для разделения углеводородов, осушки газов и жидкостей.  [c.457]

    Условия контакта газа и гликоля в абсорбере. Температура контакта газа и гликоля оказывает существенное влияние на глубину осушки газа. При высокой темпера, туре контакта увеличивается парциальное давление воды над абсорбентом, а соответственно и содержание воды в газе. Снижение температуры повышает глубину осушки газа. Однако при выборе температуры контакта необходимо учитывать увеличение вязкости гликоля со снижением температуры и ухудшение ири -)том условий массообмена, а также опасность конденсании углеводородов. Верхний предел температуры контакта обуслов- [c.143]

    Следует отметить, что эффективная работа мембранных элементов и модулей (независимо от типа) невозможна без пред-варителвной обработки газовой смеси перед подачей ее непосредственно на мембранную установку очистки. При разработке проекта конкретной установки необходимо учитывать присутствие в исходной смеси газов твердых частиц (пыли, золы, смол), капель насыщенных паров воды и нефти, легкоконденсируемых углеводородов и т. д. Поэтому во всех промышленных системах обычно устанавливают аппараты для осушки газов (например, гликолями), высокоэффективный сепаратор, фильтр. В случае необходимости после фильтра может быть установлен аппарат для очистки газа от тяжелых углеводородов. Иногда для того, чтобы исключить осушку и при этом избежать конденсации паров воды и образования пленки жидкости на мембранах, температуру подаваемого на установку исходного газа поддерживают на 10—12° выше температуры точки росы при условиях работы мембраниого элемента, а корпуса модулей и. трубопроводную арматуру исходного газа теплоизолируют. [c.287]

    I — насос второй ступени (подача жидктс углеводородов на осушку) г — дегидратор второй ступени (осушка жидких углеводородов) Л, 4 — теплообменник соответственно газ — газ и жидкость — газ 5 — адсорберы (осушка сырья деэтанизатора) 6 — сырьевая емкость деэтанизатора 7 — пропановый холодильник S — сепаратор третьей ступени (разделение углеводородов и гликоля) 9 — рефлюксная емкость деэтанизатора 10 — подогреватель газа регенерации  [c.191]

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]

    Скорость потока жидкости в свободном сечении адсорбера рекомендуется принимать равной 0,015—0,025 м/с. От принятой скорости зависит диаметр адсорбера. Высота слоя адсорбента при осушке жидкостей обычно меньше, чем при осушке газов, отношение высоты слоя к его диаметру принимается в пределах от 2—3 до 1, Минимальное время контакта рекомендуется принимать не меньше 3 с. Опыт работы некоторых установок показывает, что минимальная высота слоя адсорбента при осушке жидких углеводородов должна быть около 1,5 м. Так как влагосодержание сырья мало, то осушка жидких углеводородов относится к длинноцикловому адсорбционному процессу. При расчете высоты слоя принимается, что адсорбент извлекает всю влагу из потока газа. [c.264]

    В промышленности адсорбцию применяют для отбензииивания попутных и природных углеводородных газов, при разделении газов нефтепереработки для получения водорода и этилена, осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов из бензиновых франкций, для очистки масел н т. п. Явление адсорбции используется в хроматографии, в противогазах и т. д. [c.315]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

    Цеолиты применяются для разделения смесей газов или жидкостей по размерам молекул (например, для отделения нормальных парафиновых углеводородов от углеводородов изостроения), для разделения азеотропных смесей, для тонкой очистки мономеров перед полимеризацией, для повышения октанового числа бензинов, для глубокой осушки газов, для очистки газов и жидкостей от примессй при низких концентрациях этих примесей и т. п. [c.716]

    Технологическая схема установки инертного газа мощностью 1500 м /ч приведена на рис. IX. 3. Сырье через промежуточную емкость поступает в испаритель /, откуда пары углеводородов подаются в топку инертного газа 2, работающую под небольшим избыточным давлением (0,16МПа). Из топки2дымовой газ (после охлаждения в неиосредственно соединенном с топкой скруббере 3, орошаемой водой) направляется в адсорбер 4 на очистку от СО2 раствором моноэтаноламина. Очищенный от СО2 газ сжимается до 0,8 МПа компрессором 5, охлаждается и подвергается осушке в адсорберах 7, В качестве адсорбента используется синтетический цеолит NaA. Адсорберы работают ио сменно-циклическому графику с продолжительностью цикла, равной 24 ч. Цикл состоит из трех фаз — осушки газа, регенерации адсорбента и охлаждения адсорбера, каждая из которых продолжается 8 ч. [c.260]

    Получение низших олефинов. Головными производствами нефтехимических комплексов и заводов являются установки получения низших олефинов, состоящие из отделений пиролиза углеводородного сырья, газоразделения, переработки жидких продуктов пиролиза. Исследования в области пиролиза и газоразделения ведутся Всесоюзным научно-исследовательским институтом органического синтеза (ВНИИОС), а в области переработки жидких продуктов пиролиза — ВНИИОС, Институтом горючих ископаемых, ВНИИОлефин, а также НИИ сланцев. Для проектирования процесса пиролиза выдаются следующие данные характеристика сырья и состав продуктов пиролиза, температура процесса, время пребывания сырья в зоне реакции (время контакта), расход водяного пара, парциальные давления углеводородов в зоне реакции. При разработке проекта отделения газоразделения используют рекомендации по очистке пирогаза от сероводорода, двуокиси углерода, ацетилена и диеновых углеводородов, осушке газа, последовательности выделения легких углеводородов. [c.43]

    Установка типа 35-6. Установка предназначена для получения бензола и толуола из фракций 62—105°С или только бензола из фракции 62—85°С. Мощность установки 300 тыс. т/год. В схеме установки (рис. 40) не предусмотрена гидроочистка сырья. В на-I стоящее время все такие установки дооборудованы отдельными блоками гидроочистки. Схема блока гидроочистки такая же, как и на установке 35-11. Для обеспечения селективной и стабильной работы катализатора сырье должно подвергаться глубокой очистке от сернистых и азотистых соединений, а так же от воды. Гидро-очищенное и тщательно осушенное сырье, содержащее серы не более 0,0005 вес. % (5 ррт), в смеси с циркулирующим газом (влажность газа не более 30 мг1м ) подвергается риформингу в трех последовательно включенных реакторах. Нагрев исходной смеси и межреакторный ступенчатый подогрев осуществляют в многокамерном огневом трубчатом подогревателе. Так как установка предназначена для получения ароматических углеводородов, в схему включен реактор для гидрирования содержащихся в дистилляте непредельных углеводородов. Реакция гидрирования протекает при 280—320 °С. Стабильный дистиллят направляется на выделение ароматических углеводородов. Поскольку проектная схема не предусматривала блока гидроочистки, на установке имеется система очистки циркулирующего газа от сероводорода раствором моноэтаноламина и осушки газа диэтиленгликолем. При эксплуатации установки с блоком гидроочистки эти секции выключаются из работы. [c.101]

    В настояшее время на адсорбционных установках подготовки газа к дальнему транспорту и подготовке газа к дальнейшей переработке применяются вертикальные адсорберы периодического действия. Поток осушаемого газа движется фронтом перпендикулярно к оси аппарата по направлению оси. Отношение высоты слоя адсорбента к диаметру больше единицы и составляет 1.3 - 1,5. Одним из основных параметров работы схем адсорбционной осушки газа является гидравлическое сопротивление адсорберов. С возрастанием гидравлических сопротивлений снижаются расходы осушаемого газа, сокращается срок безкомпрессориого периода эксплуатации. Вследствие этого существует необходимость увеличения коэффициента сжатия на ДКС. Как показывает опыт работы установок на месторождении Медвежье, потери давления в отдельных адсорберах при высоте слоя 3,5 метра могут достигать 0,7-0.8 МПа. что составляет потерю давления до 0-20% и, соответственно, такое же увеличение коэффициента сжатия ДКС. Рост гидравлического сопротивления происходит из-за разрушения адсорбента по естественным причинам и несоблюдения режимов эксплуатации адсорберов. Анализ работы новых адсорберов фронтального типа производительностью 10 млн.н..м /сут для месторождения Ямала показывает, что для осушки и извлечения углеводородов необходимо и меть аппараты диаметром 3,6 м и высотой слоя 8- [c.32]


Смотреть страницы где упоминается термин Осушка газов углеводородов: [c.7]    [c.151]    [c.228]    [c.191]    [c.192]    [c.288]    [c.195]    [c.312]    [c.250]    [c.306]   
Абсорбционные процессы в химической промышленности (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осушка

Осушка газов



© 2025 chem21.info Реклама на сайте