Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь коррозия в кислотах

    Коррозия может быть химической, т. е. развиваться вследствие непосредственного химического воздействия компонентов топлива на детали из наиболее активных металлов, например действие некоторых меркаптанов серы на медь, входящую в состав сплавов, кадмий или серебро, из которых выполнены покрытия некоторых деталей топливной аппаратуры [2—4]. Для применения сернистых топлив характерны также коррозионные износы цилиндро-поршневой группы двигателей и выпускной системы коррозионно-агрессивными продуктами сгорания. Агрессивные окислы серы могут непосредственно воздействовать на металлы выпускной системы при высокой температуре газовая коррозия), но значительно более опасна электрохимическая коррозия кислотами (серной кислотой), образующимися при конденсации паров воды в остывающем или непрогретом двигателе (при [c.179]


    Влияние аэрации кислорода на скорость коррозии меди в кислотах [c.205]

    Многие мягкие кислые природные воды становятся более жесткими при добавлении извести и подаются при pH = 7- -8. При этом существенно изменяются пленкообразующие свойства. Хлоридные ионы имеют тенденцию замедлять образование пленок. Хотя нитратные ионы обычно присутствуют в значительно меньших количествах, тем не менее они также оказывают вредное воздействие. Сульфаты, которые подвергаются бактериальному превращению, разъедают бетон и могут препятствовать ингибированию. Кремнекислота является сравнительно безвредной составной частью природных вод. Она не может заменить силикатных добавок. Органические вещества могут вызвать сильный питтинг, если вытесняют кислород при осаждении на металлической поверхности. Из-за плохой теплопроводности они могут вызвать перегрев. Нефтяные пленки на воде могут способствовать бактериальной активности вследствие прекращения доступа кислорода, а также могут содержать агрессивные вещества, растворяющиеся в воде. Не все бактерии вредоносны. Некоторые из них, в частности встречающиеся в Англии, оказывают сильное ингибирующее действие на коррозию меди. Органические кислоты, вымываемые из торфяников, делают мягкие воды особо агрессивными по отношению к стали. [c.143]

    Ингибитор КМА также действует и на растворение латуни. Из табл. 2 (зависимость скорости коррозии и коэффициента торможения латуни от концентрации КМА и азотной кислоты Т = 25 ° С) видно, что коэффициенты торможения значительно выше из-за больших потерь латуни, по сравнению с медью, в кислоте без ингибитора. [c.18]

    Справедливость такого представления о коррозии металлов органическими кислотами подтверждается многочисленными работами, которыми доказано, что в присутствии воды скорость коррозии резко возрастает. Что касается коррозии со стороны активной серы, то она проявляется в основном в отношении серебра и меди. Коррозия нри этом происходит лишь при высоких температурах, поскольку при средних температурах сера образует с металлом комплексы (пленки), удерживающиеся на поверхности металла, и их образование может рассматриваться как антикоррозионный эффект. При высоких температурах комплексы распадаются, а образовавшееся соединение СиЗ является хрупким и легко удаляется с поверхности, открывая доступ новым порциям реагирующего вещества. Подобное явление есть не что иное, как коррозия, ведущая к разрушению металла. [c.240]

    В настоящее время широко известно, что межкристаллитная коррозия возможна в сварных стыках из стандартной аустенитной нержавеющей стали тина 18-8 после выдержки в диапазоне температур 500—850°. Обычный метод борьбы с этим явлением — стабилизация стали ниобием или титаном. Устойчивость против межкристаллитной коррозии оценивается но результатам испытания в реактивах Штрауса (сульфат меди—серная кислота) и Хюи (азотная кислота). Плохие результаты испытаний но этим методам иногда отмечают критики, указывая на то, что условия проведения этих испытаний гораздо более жестки, чем те, которые часто встречаются в рабочих условиях. Если бы не предъявлялись требования по устойчивости против межкристаллитной коррозии, то для многих практических целой оказались бы подходящими по коррозионной стойкости нестабилизированные стали. [c.42]


    Таким образом, скорость коррозии меди определяется в основном окислительными свойствами среды. Вытеснение воздуха инертным газом должно в отсутствие других окислителей значительно снизить коррозию меди в кислотах, не являющихся окислителями. [c.56]

    Медь и медные сплавы обладают слабой пассивируемостью. Она достаточно устойчива в неокисляющих кислотах при отсутствии доступа кислорода в серной кислоте низких концентраций, соляной кислоте низких и средних концентраций, уксусной, лимонной кислотах и др. Вследствие того, что растворы кислот практически всегда содержат кислород, медь в кислотах подвержена коррозии. [c.247]

    Свинец более подвержен коррозии в почвах, чем медь. Органические кислоты 1 фенолы, образующиеся в почве в процессе жизнедеятельности бактерий, усиливают коррозию свинца. [c.75]

    Вытеснение водорода железом. При погружении железа в разбавленный раствор кислоты, несмотря на высокое значение потенциала анодной реакции, водород выделяется совершенно свободно, так как начальная э. д. с. значительно больше, чем в случае никеля (нормальный потенциал железа — 0,44 в, а никеля —0,25 в). Перенапряжение анодной реакции значительно снижается в присутствии сероводорода (см. стр. 794). Так, добавление сероводорода к кислоте или наличие в металлической фазе сернистых соединений железа или марганца, которые в присутствии кислоты выделяют сероводород, значительно ускоряет процесс коррозии. Однако при наличии в железе или стали меди в количестве, достаточном для удаления сероводорода из раствора путем образования устойчивой сернистой меди, коррозия сильно замедляется. Как было установлено Хором с сотрудниками, действие лимонной кислоты [c.292]

    Что касается четвертого основного требования, предъявляемого к маслу, то следует отметить, что смазанные поверхности могут изнашиваться вследствие недостатков смазочного масла (этот вопрос обсуждался выше), могут повреждаться из-за коррозии, могут покрываться твердыми отложениями. Коррозия железных и стальных частей может вызываться содержащимися в масле водорастворимыми кислотами (наиболее вероятный их источник — газы, просачивающиеся из камеры сгорания через поршневые кольца) коррозия подшипников, выполненных из сплавов серебра и сплавов меди со свинцом, вызывается маслорастворимыми кислотами или перекисями, появляющимися при окислении масла [16—19]. Последняя проблема возникает при применении в условиях высоких температур парафинистых масел. [c.492]

    В качестве примера можно указать на коррозию цинка, содержащего небольшие примеси н<елеза илн меди, в соляной или в разбавленной серной кислотах. При содержании в цинке сотых долей процента какого-либо из этнх металлов скорость взаимодействия его с указанными кислотами в сотни раз выше, чем в случае цинка, подвергшегося специальной очистке. Это объясняется тем, что перенапряжение выделения водорода на меди и на железе нн) .е, чем на цин ке, а лимитирующей стадией (см. 61) реакции [c.556]

    При выполнении этой работы вы познакомитесь с химической реакцией взаимодействия азотной кислоты НЫОз с медью (Си). Такая реакция называется коррозией. Этот термин используется для любых реакций, во время которых происходит разрушение какого-либо вещества. Многие металлы корродируют под воздействием кислот. Осторожно Кожа тоже разрушается под действием кислот. [c.109]

    Облучение, облегчая протекание катодного процесса, ускоряет коррозию железа в два-четыре раза и усиливает коррозию меди и ее сплавов в растворах кислот. [c.371]

    Коррозия меди в растворах кислот (более сильное разрушение в местах прите-кания свежего раствора) [c.21]

    Так как стандартный потенциал меди гораздо положительнее стандартного потенциала водородного электрода, коррозия медн с водородной деполяризацией не происходит. В отсутствие окислителей медь обладает хорошей стойкостью в водных растворах и в обычных условиях не вытесняет водород из кислот. Процесс электрохимической коррозии меди протекает в окислительных средах (присутствие в растворе кислорода и других окислителей). Медь обычно корродирует, переходя в раствор в виде двухвалентных ионов Си +.  [c.247]

    Центральные конденсатные станции с узлами доочистки конденсата предназначены для приема конденсата, поступающего от районных конденсатных станций, и очистки его в соответствии с нормами, предъявляемыми к качеству производственных конденсатов, возвращаемых на ТЭЦ общая жесткость — не более 50 мкг-экв/кг содержание железа — не более 100 мкг/кг меди — не более 20 мкг/кг цинка — не более 20 мкг/кг никеля — не более 20 мкг/кг (всего продуктов коррозии стали и других конструкционных материалов — не более 160 мкг/кг) кремниевой кислоты — не более 150 мкг/кг нефтепродуктов типа масла и мазута — не более 0,5 мг/кг сухой остаток за вычетом оксидов металлов—1,0 мг/кг хроматная окисляемость — не более 20 мг/кг. [c.537]


    Свободные щелочи, %, не более Свободные органические кислоты и механические примеси Вода, %, пе более Испытание па коррозию стали и меди [c.716]

    Предел прочности при 50° С, Г см , пе менее Эффективная вязкость при 0° С, пз, не более Свободные щелочи, %, не более Свободные органические кислоты и механические примеси Вода, %, не более Испытание на коррозию стали и меди [c.717]

    Медь, кремнистые бронзы, свинец и олово стойки в растворах кислоты без доступа воздуха. Скорость коррозии их значительно увеличивается с повышением температуры, увеличением концентрации и степени аэрирования растворов. [c.848]

    Медь и многие сплавы на ее основе стойки только в чистой кислоте при нормальной температуре, но их скорость коррозии может увеличиться в десятки раз при аэрировании нли загрязнении раствора окислителями и повышении температуры, Из сплавов на основе меди несколько лучшей коррозионной стойкостью обладают оловянистые бронзы. Скорость коррозии молибдена, вольфрама, ниобия в растворах кислоты невелика, возможно охрупчивание ниобия а концентрированной кислоте ири высокой температуре. [c.851]

    Уксусная кислота слабая. Константа ее диссоциации 1,75-10 . Образует многочисленные растворимые в воде соли (ацетаты) и этерифицируется спиртами с получением сложных эфиров. Уксусная кислота обладает высокой коррозионной активностью по отношению ко многим металлам, особенно в парах и при температуре кипения, что необходимо учитывать при выборе материалов для аппаратуры. В ледяной кислоте стойки как на холоду, так и при температуре кипения, алюминий, кремнистый и хромистый чугуны, некоторые сорта нержавеющей стали, но разрушается медь. Техническая уксусная кислота обладает большей коррозионной активностью, которая усиливается в контакте с воздухом. Из неметаллических материалов стойки по отношению к уксусной кислоте специальные сорта керамики и эмали, кислотоупорные цементы и бетоны и некоторые виды полимерных материалов (полихлорвиниловые и фенолальдегидные пластмассы). Ингибитор коррозии в растворах уксусной кислоты — перманганат калия. [c.309]

    Добавление к чистому железу от нескольких десятых до одного процента меди умеренно повышает скорость коррозии в кислотах. Однако в присутствии фосфора или серы, которые обычно содержатся в промышленной стали, медь нейтрализует ускоряющее влияние этих элементов. Поэтому стали, содержащие медь, в неокислительных кислотах обычно корродируют в меньшей степени, чем стали, не содержащие меди 142, 43]. Судя по данным табл. 6.4, [c.126]

    Количество водорода, накапливаемое во время хранения консервов, определяется не только толщиной оловянного покрытия, температурой, химической природой контактирующих пищевых продуктов, но чаще всего составом и структурой стальной основы. Скорость выделения водорода увеличивается при использовании сталей, подвергнутых холодной обработке (см. разд. 7.1), которая является стандартной процедурой для упрочнения стенок тары. Последующая, случайная или умышленная, низкотемпературная термообработка может приводить к увеличению или уменьшению скорости выделения водорода (см. рис. 7.1). Высокое содержание фосфора и серы делает сталь особенно чувствительной к воздействию кислот, в то время как несколько десятых процента меди в присутствии этих элементов могут способствовать уменьшению коррозии. Однако влияние меди не всегда предсказуемо, так как в любых пищевых продуктах присутствуют органические деполяризаторы и ингибиторы, часть которых может выполнять свои функции только при отсутствии в стали примесей меди. [c.240]

    Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1). [c.292]

    Коррозия меди в кислоте, не обладающей окислительными свойствами, в отсутствие кислорода может продолжаться только в том случае, если и молекулярный водород, и медные катионы удаляются по мере их образования, так что равновесие никогда не достигается. Это происходит при действии кипящей концентрированной соляной кислоты на медь. В этом растворе обычные катионы меди никогда не накапливаются, так как образуются комплексные анионы [СиОа " равновесие [СиС1 7 Си + 2 СГ устанавливается в условиях, когда концентрация комплексных ионов значительно превосходит концентрацию обычных ионов. В то же время водород непрё-рывно удаляется в пузырьках хлористого водорода и воды, отгоняющихся при кипении раствора если дистиллат конденсируется в виде раствора соляной кислоты, то небольшое количество газа остается несконденсированным этот газ, как было уточнено, представляет собой водород. Таким образом, медь растворяется в кипящей концентрированной соляной кислоте даже в отсутствие кислорода [4]. [c.290]

    Удовлетворение требований по зольности и содержанию ванадия, калия и натрия достигается обычно обессоливанием исходной нефти и водной промывкой топлив. Эффективным средством борьбы с ванадиевой коррозией является и введение присадок на основе солей меди, цинка, магния, кобальта и т.д. Практическое примеьгение получили присадки, содержащие магниевые соли син — тет тческих жирных кислот и окисленного петролатума. Они [c.127]

    Равномерная коррозия металлов наблюдается в тех случаях, когда агрссснв11ые среды не образуют защитных пленок иа металле или когда сплав состоит из равномерно распределенных мелкозернистых анодных и катодных участков. Интенсивная равномерная коррозия наблюдается ири коррозии меди в азотной кислоте, железа в соляной кислоте, алюминия в едких щелочах, цинка в серной кислоте. В некоторых случаях равномерная коррозия ие вызывает значительного разрушения металла, тем ие меиее она может быть нежелательной из-за других причин (потускнение иоверхности металла, загрязнение раствора продуктами коррозии и др.). При равномерной коррозии продукты коррозии обычно не отлагаются иа поверхности металла. [c.160]

    Одним нз наиболее важных свойств продуктов коррозии является их гигроскопичность. Так, на поверхности меди в атмосфере, загрязненной сернистым газом, выкристаллизовываются продукты коррозии (сернокислая медь), которые интенсивно поглощают влагу и тем самым способствуют усилению коррозии. Гигроскопичны также продукты коррозии никеля, образующиеся при действии на него сернистой кислоты. Хлористый цинк, быстро образующийся на цинке в атмосфере, загрязненной парами соляной кислоты, также весьма гигроскопичен. Р1аоборот, продукты коррозии алюминия, образующиеся в промышленной атмосфере, хорошо предохраняют металл от разрушения даже при наличии в атмосфере сернистого газа. [c.180]

    В присутствии воздуха скорость коррозии меди значительно зависит от аниона среды (рис. 172). В соляной кислоте коррозия меди, как видно из приведенных графиков, больше, чем в серной кислоте, вследствие образования комплексов (СиСЦ) -. [c.248]

    В неокисляющих, разбавленных кислотах — НС1 (до 15%), Н2304 (до 70%) и в ряде органических кислот никель достаточно устойчив па холоду, но коррозия его заметно ускоряется при увеличении концентрации окислителен (РеС1з, СиСЬ, АдМОз, гипохлориты) пли при наличии аэрации. Его поведение и этом отношемми похоже на поведение меди. В азотной кислоте ни-кел[> нестоек. [c.256]

    Интенсивность корозии титана в соляной кислоте можно уменьшить добавкой в раствор замедлителей коррозии— окислителей (азотная кислота, хромовая, К2СГ2О7, КМПО4, П2О2, О2 и др.), а также солей некоторых металлов (меди, железа, платины и др.). При этом потенциал новой системы титан— раствор приобретает более положительное значение. В таком окисле, как ТЮг, число дефектов решетки на границе окисел — газ настолько мало, что достаточно незначительного количества кислорода, чтобы их ликвидировать. Вновь появляющиеся в процессе растворения дефекты благодаря присутствию кислорода будут устраняться, т. е. процесс пассивации будет преобладать над процессом растворения титана. [c.282]

    В отличие от сплавов Т1 — Мо, сплавы Т1 — Та имеют достаточно высокую коррозионную стойкость и в окислительных средах. Добавка меди к титану в количестве 2% значительно снижает скорость коррозии тнтана в серной кислоте. Дальнейшее повышение содержания меди не влияет па коррозионную стойкость сплава Т1 — Си, а при содержании меди свыше 5% даже 1а6,чюдается снижение коррозионной стойкости сплава. [c.288]

    В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению иоверхности металла такими реагентами, которые растворяют только продукты коррозии, но ие металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-ным раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализоваииого аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — насыщенный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеющий температуру 10—20 С. [c.337]

    Ингибирующей способностью обладает также композиция ал-килфосфата (например, триметилфосфата) и моноолеата диамина, вводимых в топливо соответственно в количествах 0,0075 % и 0,02% [пат. США 2884314]. Для улучшения противокоррозионных свойств топлив, выкипающих в широком интервале темпера- тур, применяется смесь эфира фосфорной кислоты, гидрохинолина и моноэфира полиэтилёнполигликоля [пат. США 3035906]. Для ингибирования коррозии к высокосерннстым дизельным топливам добавляют композицию веретенного масла и растворенных в нем органических соединений фосфора, азота, бария и меди [пат. США 2930680]. [c.275]

    Реакция проводится в аппарате непрерывного действия, который называют гидрататором. Он представляет собой полую стальную колонну диаметром 1,5 и высотой 10 м. Во избежание коррозии под действием фосфорной кислоты выкладывают корпус и днище листами красной меди. Катализатор насыпают в реактор высоким слоем на опорный перфорированный конус. Смесь олефина и паров воды, предварительно нагретая до температуры реакции, постугает сверху, проходит слой катализатора и выводится из нижней части гидрататора. Ввиду малой степени конверсии и неболь- [c.191]

    Детали гидромеханических коробок передач выполняют не только из чериых металлов (стали и чугуна), но и из цветных, таких как свинец, алюминий, медь, олово. Цветные металлы особенно сильно подвержены коррозии. Накопление в масле в результате окисления высокомолекулярных органических кислот и других кислых веществ, обводнение его во время работы по тем или иным причинам способствуют интенсификации процессов коррозии и требуют принятия должных мер по снижению коррозионной агрессивности масел, например введения в них специальных присадок. [c.441]

    В промышленной атмосфере медь покрывается зеленой защитной пленкой продуктов коррозии (патиной), состоящей главным образом из основного сульфата меди USO4 ЗСи(ОН)г. На медном куполе церкви, расположенной на окраине города, сторона, обращенная в сторону города, может быть покрыта зеленой патиной, а противоположная часть купола остается красно-коричневой, так как с этой стороны на медь попадает меньше серной кислоты. Патина, образующаяся на меди вблизи морских побережий, состоит из основного хлорида меди. [c.177]


Смотреть страницы где упоминается термин Медь коррозия в кислотах: [c.213]    [c.290]    [c.290]    [c.67]    [c.241]    [c.827]    [c.831]    [c.842]    [c.32]    [c.126]    [c.294]   
Коррозия пассивность и защита металлов (1941) -- [ c.333 , c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия в кислотах

Медь Коррозия



© 2024 chem21.info Реклама на сайте