Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение нагрузка при

    Для сравнения результатов во всех случаях была взята одна и та же чистота получаемых продуктов и одинаковое суммарное число теоретических тарелок, которое принято в схемах равным 36 (каждый дефлегматор и кипятильник принимался как равновесная ступень разделения). Числа тарелок по колоннам показаны на рис. П-16. Расчеты проведены на 100 моль исходного сырья, которое подавалось на разделение в виде кипящей жидкости питание во вторую н третью колонны подавалось в паровой фазе, благодаря чему была уменьшена нагрузка [c.119]


    Материальный баланс после реконструкции колонны приведен в табл. 111.4, а качество продуктов разделения в табл. 111.5. Как видно из этих данных, реконструкция позволила увеличить производительность колонны почти в два раза, получить отбор широкой масляной фракции н. к. — 490°С от потенциала 83—85% при высоком качестве разделения без заметного температурного налегания меж- ду широкой фракцией и гудроном. Специальное устройство ввода сырья в колонну обеспечило высокую степень сепарации гудроновых частиц — унос этих частиц в зоне ввода сырья составил около 34%, при эффективности сепарации сетчатого отбойника 98,5—99,3%- К. п. д. клапанных тарелок составил 30—37 /о при среднем гидравлическом сопротивлении на одну тарелку 5,3—6,7 гПа, нагрузка тарелок по пару составила / 5=1,3—1.5 и нагрузка тарелок по жидкости = = 4,7—5,7 м (м-ч). [c.184]

    Прямая схема ректификации, принятая в первоначальных схемах, как правило, не является оптимальной для разделения прямогонных бензиновых фракций, содержащих немного легких углеводородов и примерно одинаковое количество всех остальных фракций в сырье. В связи с этим для четкого выделения головной фракции, а также и последующих фракций требуются повышенные флегмовые и паровые числа и большие паровые и жидкостные нагрузки в колоннах. Запроектированная аппаратура типовой установки также не обеспечивает достаточно четкого выделения узких бензиновых фракций. Легкие углеводороды, попадая в колонну 2, резко снижают четкость ректификации, в результате чего фракция 62—105°С загрязняется (до 8—10% масс.) фракцией н.к. —62°С. [c.209]

    Струйные тарелки (рис. 18) создают направленное движение жидкости и хорошо работают при высоких жидкостных нагрузках. При невысоких скоростях газа (пара) тарелки работают в барботажном режиме, кроме того, при малых скоростях пара наблюдается провал жидкости. Минимально допустимая скорость по газу в отверстиях чешуек составляет 7 м/с. При повышении скорости барботажный режим переходит в струйный (капельный), при этом сплошной фазой становится газ (пар), а жидкость распыляется на капли. Этот режим отвечает наибольшей поверхности контакта фаз и является рабочей областью, скорость пара в отверстиях при этом выше 12 м/с. Тарелки рекомендуются для разделения загрязняющих сред. Ы [c.64]

    Как уже указывалось выше, макромолекулы в конденсированном аморфном состоянии имеют клубкообразную конфигурацию, характеризующуюся тем, что расстояние между двумя любыми точками цепи, разделенными не слишком малым числом атомов, много меньше контурной длины отрезка цепи между этими точками. Если к таким точкам приложить деформирующее усилие, то отрезок цепи между ними сможет растянуться до размеров, намного превышающих исходное расстояние между рассматриваемыми точками. Так как растяжение цепи сопровождается уменьшением энтропии, то после снятия нагрузки цепь вернется в свое исходное клубкообразное состояние. Этот же механизм действует и в том случае, если имеется совокупность цепей, связанных в сетку. Именно этим обусловлена способность эластомеров к большим обратимым деформациям. [c.48]


    Необходимо отметить, что выбор конструкции аппарата для осуществления конкретного процесса разделения определяется, в первую очередь, типом и характеристиками избранной для этих целей промышленно выпускаемой мембраны и, что не менее важно, технологическими параметрами процесса — давлением (и абсолютным перепадом давлений), температурой, составом газовой смеси, коррозионной активностью ее компонентов, нагрузкой по исходному газу и др. [c.195]

    При последовательном соединении мембранных модулей отпадает необходимость в тщательном контроле нагрузки каждого модуля (рис. 6.2). Кроме того, возможно получение пермеата неодинакового состава, а это открывает путь к разделению в одноступенчатой установке многокомпонентных газовых смесей. [c.196]

    Наиболее часто в промышленных одноступенчатых установках встречается комбинированное (параллельно-последовательное) соединение мембранных модулей (рис. 6.4). При таком расположении модулей обеспечиваются простота и легкость изменения нагрузки по исходной газовой смеси, возможность разделения многокомпонентной смеси, достижения высокой степени извлечения целевого компонента и пр. [c.197]

    Оказалось, что с возрастанием скорости потоков а одной и той же колонне (увеличение нагрузки по исходной газовой смеси) степень разделения исходной смеси уменьшается. Например, при <7р= 1,73-10 моль/с концентрация СО2 в верхнем продукте — дистилляте — составляла 87,3% (об.), а концентрация метана в кубовом остатке — 89,0% (об.) (рассчитанная величина).  [c.222]

    Мембранная колонна может быть составлена и из нескольких последовательно соединенных между собой модулей плоскокамерного типа (см. рис. 6.17). В этом случае можно гибко регулировать нагрузку (производительность) установки по разделяемой смеси газов и степень разделения и использовать серийно выпускаемые стандартные модули. [c.223]

    Критерием оптимизации вариантов служило отношение нагрузки компрессора к производительности по потоку пермеата ( комп/ р), характеризующее удельные энергозатраты на процесс разделения. Результаты расчетов, проведенных из допущения бесконечно большого соотношения давлений в напорном п дренажном каналах, представлены на рис. 6.22. [c.228]

    Результаты испытаний пилотной установки с аппаратом плоскокамерного типа (мембрана МЕМ-079) показали, что даже при разделении в одну ступень концентрация метана в топливном газе достигает 98% (об.). При увеличении числа ступеней (работа в каскадном режиме) возможно достижение, высокой — до 90%—степени утилизации метана из исходного биогаза. Очевидно, что даже при высоких (3540 м /ч) нагрузках по газу эксплуатация мембранной установки экономически выгоднее. [c.304]

    Различают проверочную и проектную постановки задачи расчета. Отличие за ключается в заданных и искомых величинах. В проверочном варианте задача сводится к отысканию значений зависимых выходных переменных как функций входных управляющих и возмущающих пе ременных при известных конструктивных параметрах. В проектном варианте определяются конструкционные параметры и управляющие величины при заданных степени разделения и нагрузке. [c.76]

    В дальнейшем проводились исследования, направленные на разработку более общих и гибких эвристик, использование которых позволило бы существенно повысить эффективность методов синтеза схем разделения. Так, предлагался принцип построения схем разделения,. в основе которого использовался критерий ми- нимальной общей тепловой нагрузки на схему колонн, поскольку экономичность процесса ректификации определяется энергетическими затратами на процесс. [c.287]

    Рассмотрим результаты использования метода динамического программирования при. построении оптимальной технологической схемы обычной РКС для разделения пятикомпонентной смеси пропан (Л) — изобутан (В) — н-бутан(С) — изопентан( )) — н-пен тан( ) при заданной нагрузке по величине потока исходной смеси. В этом случае в синтезируемой системе не учитывается возможность интегрального использования энергетических потоков. [c.299]

    Ограничения по материальным и энергетическим потокам выявляются в некоторой степени на этапе анализа свойств реагентов, продуктов реакции и разделения, тепло- и хладоагентов, исследования фазового и химического равновесия. Предварительный же расчет отдельных аппаратов на этапе выбора способа (или альтернативных способов) ведения процесса позволяет найти реальные (в рамках принятых допущений) нагрузки с учетом эффективности. При наличии этих данных схема может анализироваться без детального проектирования отдельных элементов для получения оптимальной технологической схемы. [c.144]

    В качестве примера с помощью динамической модели рассчитывался процесс разделения ранее описанной смеси Oj—Nj в мембранной колонне с дополнительным модулем, включенным между выходом компрессора и входом в зону высокого давления обогатителя (рис. 7.23). При прочих неизменных условиях проведения процесса определялись длина колонны и элемента и нагрузка компрессора. Результаты расчета показали, что при тех же количествах и составах продуктов длина колонны с модулем уменьшается более чем в два раза и составляет 2,35 м, а поток рецикла снижается почти в четыре раза и равен 0,42 см /с. [c.377]


    Использование только одного острого орошения в ректифи — каг,ионных колоннах неэкономично, так как низкопотенциальное теггло верхнего погона малопригодно для регенерации теплообме — ноп. Кроме того, в этом случае не обеспечивается оптимальное распределение флегмового числа по высоте колонны как правило, он(1 значительное на верхнихи низкое на нижних тарелках колонны. Соответственно по высоте колонны сверху вниз уменьшаются значения КПД тарелок, а также коэффициента относительной летучести и, следовательно, ухудшается разделительная способность нижних тарелок концентрационной секции колонны, в результате не достигается желаемая четкость разделения. При использовании циркуляционного орошения рационально используется тепло от — би[)аемых дистиллятов для подогрева нефти, выравниваются нагрузки по высоте колонны и, тем самым, увеличивается производительность колонны и обеспечиваются оптимальные условия работы контактных устройств в концентрационной секции. [c.169]

    В случаях, когда нагрузки по пару и жидкости значительно изменяются по высоте колонны, ее целесообразно выполнять из частей разного диаметра и использовать тарелки с различным числом потоков. Например, атмосферная колонна высокопроизводительной установки (рис. 100) имеет в верхней и нижней частях меныпий диаметр и тарелки с различным числом потоков. В сечениях с большим количеством жидкости — контуре циркуляционных орошений, средней и отгонной частях колонны — установлены четырехпоточпые клапанные тарелки. В сечении с небольшой жидкостной нагрузкой — над вводом сырья — установлены одно-поточные тарелки. Переток флегмы при смене числа потоков на тарелках осуществляется распределительными коллекторами. Для вывода орошения в верхней и средней частях колонны установлены сборные тарелки с трубами для прохода паров. Эти тарелки предназначены также для перераспределения флегмы при ее перетоке с двухпоточных на четырехпоточные тарелки. В месте ввода сырья установлено устройство, состоящее из трех конических обечаек, нижняя из которых является сборником-распределителем флегмы. Сырьевой поток подается тангенциально по двум штуцерам из одного штуцера поток попадает в кольцевое пространство между верхней и средней коническими обечайками, а из второго — в область между средней и нижней обечайками. Такое разделение потоков способствует более спокойному их вводу и лучшей сепарации жидкой фазы. [c.131]

    Алгоритм расчёта по вариан л/ ДА1 сложных ректификационных колонн с произвол1 ной схемой разделения при закрепленных тепловых нагрузках по высопе колонны представлен на рис.3.4. [c.54]

    При кэиске работоспособного, надежного и быстродействующего метода расчета сложных ректификационных систем с закрепленными тепловыми нагрузками, параллельно и закрепленными отборами продуктов разделения было рассмотрено более ста различных алгоритмов. Здесь приве дены только работоспособные алгоритмы. Они отличаются методами опре/ еления независимых переменных, применением численных или аналитически) частных производных и способом реализации алгоритма расчета (одноь онтурные и двухконтурные). [c.138]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    С увеличением давления быстро растет глубина извлечения углеводородов. В последнее время за рубежом строят заводы, на которых абсорбция осуществляется под давлением 100 ат и выше. Однако с увеличением глубины отбора отдельных компонентов в насыщенном абсорбенте увеличивается содержание низших углеводородов (метана, этана), что создает большие трудности при регенерации абсорбента. Для выделения неконденсн-рующихся углеводородов насыщенный абсорбент по выходе из абсорбера подвергается стабилизации, которая проводится в колонне, как правило, разделенной на две секции. В нижней секции из насыщенного абсорбента удаляются метан, этан и часть пропана. Эти газы направляются в верхнюю секцию колонны, где орошаются регенерированным холодным абсорбентом для выделения из газов пропана. Выделение метана, этана и части пропана пз абсорбента осуществляется или путем его нагрева при помощи горячего регенерированного абсорбента или снижением давления по сравнению с давлением в абсорбере. Указанный аппарат позволяет эффективно отделять метан и этан при общем выделении пропана из газа более 60% и бутана более 95%. Выделение значительной части метана и этана снижает нагрузку на компрессор, конденсатор и этановую колонну. [c.21]

    При параллельном соединении аппаратов на каждый мембранный модуль в установке подается примерно равное количество исходной смеси одного и того же состава (рис. 6.1). Потоки ретанта и пермеата после разделения направляются в общие коллекторы. При изменении нагрузки, например при ее уменьшении, часть модулей может быть отключена, и поскольку все модули в установке работают при одинаковых условиях, изме- [c.195]

    Способ организации и, следовательно, расчета одноступенчатой установки определяется технологическими целями процесса разделения. Например, если из газовой смеси требуется извлечь какой-либо компонент, обладающий наиболее высокой проницаемостью СО2 или Нг из природного газа и др.), наиболее оптимальным представляется осуществление процесса на одноступенчатой многостадийной (при больших концентрациях извлекаемого компонента) установке с параллельно-последовательным расположением стандартных мембранных модулей одного и того же типоразмера. Исходными данными для расчета в этом случае являются нагрузка по исходной смеси (17/) состав газовой смеси, подаваемой на разделение y f) , требуемая концентрация селективнЬпроникающего компонента в ретанте (у,г) давление разделяемой смеси (Р1) и пермеата (Рг) конструктивный тип стандартного газоразделительного модуля, используемая в нем мембрана, ее характеристики. [c.200]

    Наиболее точный метод расчета многоступенчатых установок с рециркуляцией — поступенчатый (по аналогии с потарелочным при расчете абсорбционных, ректификационных и экстракционных аппаратов). Задачей вычислений является определение числа ступеней разделения (и числа аппаратов в каждой ступени) для достижения заданной степени разделения смеси (или необходимой степени выделения целевого продукта) при известных нагрузке по газовой смеси, концентрации целевого компонента, давлениях Ру и Ра, характеристиках мембраны Л , аРц- [c.206]

    В 1985 г. фирма Монсанто ввела в эксплуатацию промышленную установку очистки биогаза, полученного из городских стоков с помошью аппаратов на полых волокнах Призм [67]. Газ на разделение подают под давлением 2,0 МПа. В результате очистки концентрация СО2 снижается с 34 до 2% (об.). Минимальная нагрузка по исходному газу составляет 300 м /ч. Срок окупаемости установки менее 6 лет, причем с повышением расхода очищаемого биогаза этот срок существенно уменьшается. [c.303]

    Предложено и испытано [110] оригинальное решение —применять для извлечения газов из бедных отечественных месторождений [0,02—0,06% (об.) Не] мембраны, более проницаемые по метану, чем по гелию. Так, для силара характерно резкое уменьшение коэффициента проницаемости по гелию и фактора разделения Не/СН4 при парциальных давлениях гелия 4000— 1000 Па [Л соответствеиио до 12-10 и 0,124 моль-м/(м - с-Па)]. Расчеты показали, что за счет высокого парциального давления метана в разделяемом газе поверхность мембран из силара (для одной и той же нагрузки по газу) на два порядка меньше, чем для мембраны из ПВТМС. При применении силара выше степень обогащения потока гелием, кроме того, можно иоключить из процесса стадию компримирования исходного газа и гелиевого концентрата, подаваемого на установку низкотемпературной ректификации. [c.324]

    Струйные тарелки (см. рнс. 1.22,6) рекомендуются для атмосферных и отпарных колонн диаметром до 3,2 м, в колоннах под давлением диаметром до 4 м, а также при разделении по-лимеризующихся, коксующихся и разлагающихся веществ для уменьшения продолжительности пребывания их в колонне. Струйные тарелки, называемые также чешуйчатыми или язычковыми, создают направленное движение жидкости и хорошо работают при высоких жидкостных нагрузках. Прн малых скоростях пара наблюдается провал жидкости, поэтому должна быть обеспечена минимальная допустимая скорость в отверстиях чешуек (около 7 м/с). Наибольшая эффективность тарелок достигается в струйном режиме при скорости в щелях более 12 м/с. [c.79]

    Решая уравнение (1.143) при G .n = 0 и Фо —О, паходят то> -ки пересечения линии перелива с осями координат. Как видно из рис. 1.29, линия перелива отсекает от области эффективной работы участок с наивысшими нагрузками но жидкости и парам, соответствуюш,ий малой продолжительности разделения сильно газированной жидкости. [c.97]

    Расчетный метод процесса экстракции жидким пропаном позволяет определить фазовые переходы к равновесному состоянию, а на этой основе — перераспределение компонентоз сырья между пропано-масляной и асфальтовой фазами. Перераспределение компонентов в свою очередь позволяет найти выход целевой фракции (деасфальтизата) и содержание углеводородной фракции в пропановом растворе. Если имеется физико-химическая характеристика узких фракций сырья, на основании расчета определяют качественную характеристику деасфальтизата и асфальта, в том числе и групповой химический состав продуктов разделения. По полученным данным легко вычислить диаметр экстракционного аппарата и по найденному диаметру рассчитать истинную объемную скорость смешения фаз и кратность внутренней циркуляции потоков. Наконец, можно составить точный материальный баланс по ступеням с учетом выходных и промежуточных потоков в экстракционной колонне, а следовательно, можно рассчитать нагрузку по жидкости для каждой секции аппарата. [c.221]

    В дальнейшем в качестве критерия оптимальности синтезированной РКС использовалась суммарная величина парового потока во всех колоннах при допущении, что экономичность процесса разделения определяется -именно онижением тепловой нагрузки на кубы колонн. Рассматривалась задача синтеза оптимальной схемы разделения смеси бензол—толуол—этилбензол, которая, как известно, не относится к классу трудноразделимых смесей. При ре- [c.287]

    Возвращаясь к критерию (8.19), следует обратить внимание на факторы, которые обеспечивают минимум приведенных затрат по созданию и эксплуатации системы. Прежде всего это подвод энергии внешних источников (тепла или холода) для доведения параметров выходных потоков до предписанных значений. При одновременном синтезе всей технологической схемы эта проблема может и не возникнуть, так как внешними источниками и стоками энергии тепловой системы могут быть другие системы производства (реакторная, разделения и т. д.), т. е. рекуперация энергии будет осуществляться в масштабах всего производства. Если тепловую систему рассматривать отдельно, то необходимы дополнительные затраты на компенсацию несоответствия параметров выходных потоков заданным значениям. При синтезе системы теплообмена желательно, чтобы эти затраты были хотя бы минимальными. Оценка минимально потребляемого количества внешней энергии может быть произведена с помощью диаграмм температура — тепловая нагрузка [16]. Для этого в координатах Г, Q для объединенных холодного и горячего потоков строятся зависимости Т = j Q) ж совмещением последних до разности температур по вертикали, равной А7 т1п (перемещая один график относительно другого по оси абцисс), определяется температурный (соответственно и по тепловой нагрузке) интервал, который не может быть компенсирован в результате взаимодействия этих потоков (рис. 8.3). Это несоответствие параметров потоков должно компенсироваться за счет внешних источников тепла. [c.455]


Смотреть страницы где упоминается термин Разделение нагрузка при: [c.37]    [c.277]    [c.182]    [c.194]    [c.62]    [c.28]    [c.56]    [c.73]    [c.9]    [c.298]    [c.342]    [c.196]    [c.293]    [c.303]    [c.353]    [c.101]    [c.146]    [c.374]   
Жидкостная хроматография при высоких давлениях (1980) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Нагрузка



© 2025 chem21.info Реклама на сайте