Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридиновые производные, окисление

    При окислении нефтяных углеводородов образуется ряд соединений, имеющих кислотный характер они сообщают поверхности отрицательный заряд. Это относится не только к сырью, но и к получаемому из него коксу. При пиролизе нефтяных углеводородов и их производных разрущаются окислы кислотного характера. Остаются основные окислы, имеющие положительный заряд, типа пиридиновых оснований.  [c.217]


    Наиболее важное значение для пиридиновых синтезов имеют следующие свойства их а- и у-положений алкильные, арильные и аминогруппы можно непосредственно вводить в а-положение путем нуклеофильного замещения галогенов, находящихся в а- и у-положениях, в эти положения можно ввести самые разнообразные заместители избирательным окислением а- и у-алкильных групп легко получить пиридинкарбоновые кислоты, из которых с помощью обычных методов можно получить соединения с различными боковыми цепями и наконец, сами алкильные группы в а- и у-алкилпиридинах можно также использовать для синтеза боковых цепей, так как они легко образуют мезомерные карбанионы, являющиеся высокоактивными нуклеофильными агентами. Амино- и ок-сигруппы, как и в соответствующих производных бензола, могут активировать кольцо в реакциях электрофильного замещения, после чего активирующие группы могут быть элиминированы. [c.94]

    Реакции пиридина с алкил- или ариллитиевыми производными протекают в две стадии первоначально происходит присоединение литийорганических реагентов с образованием Ы-литиевых солей дигидропиридинов, которые затем превращаются в замещенные ароматические пиридиновые структуры в результате окисления (например, воздухом), диспропорционирования или потери гидрида лития [30]. Образование Ы-литиевых производных дигидропиридинов можно зафиксировать спектрально, некоторые из таких соединений могут быть вьщелены [31]. Атака литийорганическими реагентами практически всегда протекает по а-положению в случае 3-замещенных пиридинов обычно реакция прохо- [c.112]

    В литературе описано несколько попыток прямого -получения альдегидов пиридинового ряда путем окисления а- и -у-пиколинов двуокисью селена [86—88]. Эта реакция была с успехом применена в ряду хинолина [89], но производные пиридина, по имеющимся сведениям, окисляются прямо до кислоты, причем образуются только следы альдегида. Возможно, что низкие выходы, указанные в литературе для этих реакций, отчасти связаны с тем, что для них применялась долго хранившаяся двуокись селена и что при употреблении свежеприготовленного препарата выходы будут более высокими. [c.387]

    Небольшое семейство растительных алкалоидов, грибковых и бактериальных антибиотиков относится к пиридонам, т.е. к производным пиридина, содержащим в гетероциклическом кольце карбонильную группу. В некоторых случаях их биосинтез осуществляется путем окисления пиридиновых предшественников. Таково происхождение рицинина 6.148 — алкалоида клещевины, растения, из которого получают касторовое масло. Основные этапы биосинтеза пиридона 6.148 показаны на схеме 117. [c.462]


    Пиридинкарбоновые кислоты. Карбоновые кислоты пиридинового ряда получаются при окислении гомологов пиридина, а также некоторых алкалоидов и производных хинолина. [c.543]

    Синтезы Скраупа и другие доказывают присутствие в молекуле хинолина бензольного ядра окисление в хинолиновую кислоту и ее производные доказывает наличие в его молекуле пиридинового ядра. Положение заместителей в хинолиновых основаниях устанавливается реакциями окисления или синтезами из соответствующих соединений ряда бензола. [c.615]

    Обычный способ получения никотиновой кислоты состоит в окислении боковой цепи доступных -замещенных производных пиридина (Р-пиколина, никотина и анабазина) перманганатом калия или азотной кислотой. Пиридиновый цикл устойчив к действию самых энергичных окислителей. Синтез препарата окислением никотина протекает по схеме [c.173]

    Кислоты группы пиридина. Пиридипкарбоновые кислоты получаются при окислении перманганатом калия боковых ценей пиридиновых производных. Три монокарбоновые кислоты пиридина с карбоксильными группами в положениях 2, 3 и 4 (табл. 29) получаются легче всего окислением трех пиколинов. Многие природные продукты содержат углеводородные боковые цепи и, следовательно, дают в результате окисления кислоты пиридина. Так, при окислении алкалоида никотина образуется никотиновая кислота. [c.719]

    Меньшую активность проявляют эфирные атомы кислорода и серы. Однако последние могут окисляться до сульфоксидных групп Для макроциклических соединений, содержащих ароматические или гетероциклические заместители, возможны многочисленные реакции электрофильного замещения (алкилирование, галогенирование, нитрование). Гидрирование соединений, содержащих бензольные или пиридиновые ядра, приводит к образованию производных циклогексана или пиперидина соответственно. Реакции окисления сравнительно редко используют для превращения одних макроциклических лигандов в другие. Интересным примером процессов такого рода может служить озонолиз DB18 6, сопровождающийся образованием производного 18С6, содержащего четыре карбонильные группы [931 [c.36]

    Содержание Р-пиколина в легких пиридиновых основаниях можно повысить до 35% и больше в результате каталитического (над пятиокисью ванадия с трехокисью молибдена и кобальта) парофазного окисления его спутников, которые окисляются до двуокиси углерода легче (при 350° С), чем Р-пиколин [74, 85]. Однако в настоящее время в связи с применением 7-пиколина для синтеза производных изоникорнилгидразонов, активных противотуберкулезных препаратов (фтивазид и др.) [86], практическое значение могут иметь только такие методы, которые дают возможность полностью использовать изомерные пиколины. Из отходов пиридиновых оснований от производства фтивазида, содержащих Р-пиколин и а, а -лути-дин (после выделения 7-пиколина), р-пиколан получают с выходом 40% через комш1екс с хлористым цинком и используют для синтеза никотиновой кислоты [87]. [c.300]

    Необходимость окисления на заключительном этапе отпадает, если использовать вместо аммиака гидроксиламин [251], так как в этом случае 1,4-элимини-рование молекуы воды приводит к ароматическому производному пиридина. Такая же стратегия используется в синтезе производныых пиридина, при котором конструирование синтетического эквивалента 1,5-дикарбонильного соединения происходит в результате тандемного процесса, включающего реакцию Михаэля аниона дйметилгидразона с еноном и последующее ацилирование. Элиминирование диметиламина на заключительной стадии приводит к образованию ароматического пиридинового цикла [252] [c.145]

    По своему положению азот пиридинового цикла является типичным азотом третичного амина, так как три из пяти его валентных электронов связаны с углеродом, а два образуют свободную пару. Вследствие этого для пиридина и его производных характерно большинство типичных реакций третичных аминов. Наиболее важные из этих реакций можно разделить на следующие четыре группы 1) образование солей с кислотами, 2) комплексо-образование, 3) окисление при действии таких агентов, как надсерная кислота и перекись бензоила, приводящее к окиси амина, и 4) образование Ы-алкил- и Ы-арилпиридиниевых соединений. Во всех этих реакциях связь осуществляется при участии свободной электронной пары азота, в результате чего образуется четырехковалентный азот. [c.318]

    Декарбоксилирование пиридинполикарбоновых кислот является методом синтеза пиридинкарбоновых кислот и соединений ряда пиридина вообще и поэтому имеет очень широкое применение. Поскольку карбоксильные группы, находящиеся в положении 2 и 4 пиридинового цикла, элиминируются легче, этот способ в конечном счете приводит только к производным никотиновой кислоты. В качестве примера, иллюстрирующего это положение, можно привести окисление хинолина (IV) в хинолиновую кислоту (V) и последующее легкое декарбоксилирование ее до никотиновой кислоты (VI)  [c.440]


    При окислении солей алкилхинолиния перманганатом калия происходит расш,епление пиридинового кольца и образование производных антраниловой кислоты [795]. Иногда образуется небольшое количество N-замещенного изатина. [c.184]

    При окислении 1,2,3,4-тетрагидрохинолина, а в особенности его ацильных производных, расщеплению подвергается восстановленное пиридиновое кольцо. Придействии перманганата калия на тетрагидрохинолин образуется преимущественно щавелевая кислота и следы антраниловой кислоты J800]. При электролитическом окислении тетрггидрохинолина в серной кислоте на аноде из окиси свинца из продуктов реакции были выделены следующие соединения 2,5-диоксибензойная, пропионовая, малеиновая, щавелевая И муравьиная кислоты, аммиак,, углекислый газ и окись углерода [801]. [c.185]

    Строение никотина было установлено его ступенчатым расщеплением. Так, окисление оксидом хрома (VI) привело к никотиновой кислоте (Р-пиридинкарбоновой кислоте), что указывало на наличие в никотине пиридинового кольца, связанного в р-положении с кольцом состава С5Н4Ы. Строение последнего было установлено окислением иодметилата в щелочной среде в производное пиридона — метилникотон, который в свою очередь был окислен оксидом хрома (VI) в Ы-метилпирролидин-а-карбоновую кислоту — гигриновую кислоту (П. Каррер, 1925 г.)  [c.588]

    Разделение и идентификацию микроколичеств аминофенолов можно проводить методами бумажной хроматографии. Хотя прошло более 10 лет с тех пор, как впервые бумажная хроматография была применена для разделения симпатомиметических аминов (Викстрём и Сальвезен [130]), но пирокатихин-амины все еще трудно разделять и идентифицировать этими методами (Вейс и Росси [131]). Наиболее часто в качестве растворителя используют смесь бутанол — уксусная кислота — вода некоторые исследователи применяли хлоруксусную, муравьиную или соляную кислоту вместо уксусной, но с этими кислотами образуется множество пятен (Беккетт [132]). В двумерной хроматографии в качестве второго растворителя часто используют смесь изопропиловый спирт — концентрированный аммиак — вода (8 1 1) недавно Смит [133] предложил использовать трет-амиловый спирт—17%-ный метиламин (4 1) и либо изобутанол — водный пиридиновый буфер (4 1), pH — 4 [буфер, представляющий собой смесь вода — пиридин — уксусная кислота (100 4 1), pH == 4], либо нитробутан — 70%-ный водный раствор уксусной кислоты (9 4). Аминофенолы, невидимые в ультрафиолетовом свете, можно обнаружить и частично идентифицировать путем опрыскивания смесями, применяемыми обычно для проявления фенолов, например смесями хлорное железо — феррицианид калия или диазотированные амины, или реагентом на амины — нингидрином. Феррицианид калия (0,44% в буфере при pH 8) используют для обнаружения адреналина, норадреналина и родственных Н-ал кил замещенных соединений, которые после окисления дают сильно флуоресцирующие адренохромы. Для обнаружения производных индола можно использовать п-диметиламинобензальдегид. [c.62]

    Ароматический характер пиридинового ядра сказывается, в первую очередь, в реакции окисления гомологов пиридина. Пиридин и его производные, подобно соединениям ароматического ряда, вступают в реакции гидрирования и замещения. Кроме того, за счет атома азота пиридин и его производные способны образовывать соли ониевого характера. [c.213]

    Окисление воздухом щелочного гидросульфитного куба этого соединения приводит к желто-зеленому монометаллическому производному (XXIX). Заменить металлом водород второй оксигруппы не удается даже при обработке концентрированными растворами щелочи. Действием уксусного ангидрида на Вг2, В22 -диоксидибензантрон в присутствии пиридина образуется синее моноацетильное производное (XXX). Растворы последнего обладают исключительно интенсивной розово-красной флуоресценцией, маскирующей истинную окраску вещества. Флуоресценция пиридинового раствора с несколькими [c.130]

    Особый интерес представляют случаи, когда в роли донора азота для N-группы выступают органические азотсодержащие вещества. Например, при совместном окислении толуола с форм-амидом, диметилформамидом, н-бутил- и бензиламинами, анилином и ацетонитрилом на нанесенном окисном ванадиевом контакте был получен бензонитрил с выходом до 10% [10]. По данным авторов этой книги, полученным совместно с Б. Т. Джу-суповым, соокисление толуола с жирными и ароматическими аминами, пиридиновыми основаниями, азотсодержащими производными муравьиной кислоты и нитробензолом особенно хорошо идет на катализаторе состава V2O5 TIO2 = 1 0,5 при 360— 400 °С доноры N вступают в реакцию практически нацело [173]. [c.148]

    Антраценовое масло содержит фенолы, нафталин, дифенил, фенантрен, карбазол, акридин и только 2—4% антрацена. Выделение антрацена, достаточно чистого для окисления в антрахинон, является длительным процессом, практикуемым, однако, в Европе. В США антрахинон получается исключительно из фталевого ангидрида. Одной из причин переработки антраценового масла является растущая потребность в карбазоле. Последний служит сырьем для широко применяющегося красителя (Гидронового синего), синтетических смол с ценными электротехническими качествами (полимер Н-винилкарбазола Лувикан Ю ) и инсектицида — тетранитро-карбазола. Возможно, однако, и синтетическое получение карбазола. Если сырой антрацен не используют для очистки, то его применяют для производства газовой сажи. После охлаждения масло образует зеленую флуоресцирующую мазеобразную массу, и фильтрование через вакуумфильтр дает осадок с 15% содержанием антрацена. Холодное и горячее прессование под давлением 200—300 атмосфер повышает его содержание до 40%. Промывка сольвент-нафтой и пиридином (или другими подходящими растворителями, например ацетоном или высококипящими фенолами), в которых примеси растворяются лучше, чем антрацен, дает продукт, состоящий в основном из антрацена (около 80%) и карбазола. Старый метод отделения карбазола состоял в нагревании смеси с едким кали до 230°, когда калиевое производное карбазола отслаивается. В настоящее время карбазол растворяют в пиридине. Сырой антрацен, содержащий 20—25% карбазола, может быть доведен до 94—95% чистоты двумя экстракциями горячими пиридиновыми основаниями (т. кип. 130—150°) при 90°, охлаждением до 20° и фильтрацией. Последующая кристаллизация из пиридина повышает чистоту до 97%. Затем антрацен высушивают под вакуумом, причем перед открытием сушилки необходимо продуть ее азотом, так как в противном случае может произойти взрыв. Возгонка полученного антрацена дает вещество 99,9% чистоты. В непрерывном процессе отделения карбазола от антрацена бензол перколируют через слой сырого антрацена, затем раствор промывают 80—86% серной кислотой при 20—30°. Сульфат карбазола выделяют из кислоты разбавлением. Из бензола выделяется почти чистый антрацен, а бензол возвращается в производство. Антрацен 90—95% чистоты перегоняют с перегретым паром и получают вещество в виде очень мелкого порошка, идущего на окисление в антрахинон. [c.57]

    Способность к обратимому окислению и восстановлению проявляют диниридил и дипиридилэтилены (виологены) XX и их производные, а также индиго XXI в виде сульфопроизводных, которые растворимы в воде. Для гетероциклических соединений типа дини-ридила и дипиридилэтиленов, обратимость наблюдается у тех из них, у которых содержится хотя бы одно пиридиновое кольцо в положении 4 [6]  [c.83]

    Пиридинкарбоновые кислоты, подобно пиридиновым основаниям, являются алькильными производными пиридина, существуют карбоновые кислоты, в радикале которых содержится остаток пиридина. Их можно рассматривать как продукты окисления пиридиновых оснований, так как алкилы боковых цепей при окислении образуют карбоксильные группы. Известны все три изомера пиридинмонокарбоновых кислот, а также все ди- и поликарбоновые кислоты пиридина. [c.517]


Смотреть страницы где упоминается термин Пиридиновые производные, окисление: [c.97]    [c.483]    [c.483]    [c.97]    [c.392]    [c.611]    [c.185]    [c.207]    [c.207]    [c.187]    [c.591]    [c.191]    [c.305]    [c.36]    [c.437]    [c.256]   
Ферменты Т.3 (1982) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

пнл пиридиновые



© 2025 chem21.info Реклама на сайте