Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок метастабильные состояния

    Эти рассуждения показывают, что статистическая механика, продуктивно используя представление о вероятности, позволяет вычислять термодинамические функции на основе простых физических моделей молекулярных систем В.месте с тем она не прибавляет к вопросу об их возможном развитии ничего сверх того, что вытекает из законов классической термодинамики. Неравновесные системы, достигая равновесного состояния, приобретают ту структуру, которая отвечает экстремуму соответствующей термодинамической функции. Однако существование различных запретов и барьеров (расчет которых не входит в задачи термодинамики) ведет к появлению метастабильных состоянии. Отдельные переходы между ними осуществляются в тех случаях, когда эти барьеры невелики при этом сохраняется основная структура молекулярной системы. Таковы, иапример, разнообразные конформационные переходы молекул гостей в клатратах и канальных соединениях или конформационные превращения белков. [c.309]


    При рассмотрении механизма ренатурации БПТИ состояние белковой цепи на пути от статистического клубка к нативной конформации оценивалось, следуя Крейтону [7], по дисульфидным связям (см. рис. IV. 17), Считалось, что чем больше их число и чем ближе они подходят к системе дисульфидных связей конечной структуры, тем дальше продвинулся процесс сборки. При экспериментальном изучении ренатурации белков альтернативного, столь же надежного способа идентификации структуры промежуточных метастабильных состояний практически нет. Действительно, дисульфидная связь является удобным критерием. Она указывает на сближенность определенных участков белковой цепи на этапах свертывания, надежно характеризует как исходное, полностью денатурированное состояние, так и конечную, нативную трехмерную структуру. И тем не менее способ идентификации промежуточных состояний только по дисульфидным связям не может пролить свет на многие важные детали механизма ренатурации и ответить на поставленные вопросы. Возникновение этих связей является следствием, а не причиной самоорганизации белковой цепи. [c.480]

    Если белки только метастабильны, их структуры должны сильно отличаться от наиболее стабильных структур. В течение длительного времени в литературе обсуждается вопрос, отвечает ли нативная структура абсолютному (глобальному) минимуму свободной энергии (термодинамическая гипотеза свертывания белка [433]) или только локальному минимуму (кинетическая гипотеза свертывания балка [24S, 434]), т. е. метастабильному состоянию. Предполагается, что самым стабильным состоянием должен был бы быть, например, сложный узел (рис. 5.15, в), который цепь самопроизвольно в действительности образовать не может. На языке термодинамики это означает, что цепь не в состоянии преодолеть высокий барьер AG , свободную энергию активации. Этот барьер включает большой энтропийный вклад из-за исключительности конформаций, допускающих образование узла путем прохождения одного конца цепи через петлю, образованную другим концом. К тому же такие конформации цепи оказались бы довольно неустойчивыми, поскольку потеря энтропии не будет скомпенсирована связывающей энергией или свободной энергией растворителя [уравнение (3.2)], как это имеет место в нативной структуре. Поэто му барьер AS почти полностью определяет барьер AG" . Наконец, нативная структура хорошо описывается метастабильным состоянием с очень большим временем жизни. Однако ни один экспериментальный метод не в состоянии различить стабильное и метастабильное состояния. Более того, это не имеет и какого-либо биологического значения. Однако метастабильное [c.181]


    Вопрос о структуре белка в составе комплексов окончательно не решен. Предполагают, что белок р-липопротеидов имеет складчатую структуру, а белок липопротеидов высокой плотности — конфигурацию а-спирали [297]. Выделение из липопротеидов белка в нативном состоянии затруднено из-за легкости его денатурирования. Это навело на мысль о метастабильном состоянии белка в биокомплексах, что согласуется с термодинамическими соображениями, согласно которым процесс комплексообразования нарушает вторичную и третичную структуры белка. [c.373]

    Выбранный для первого в научной практике априорного расчета белковой трехмерной структуры объект, безусловно, должен быть низкомолекулярным, однодоменным, состоять из одной полипептидной цепи и являться прямым продуктом биосинтеза. Далее, его нативная конформация должна включать систему дисульфидных связей, поскольку в настоящее время эти связи служат, если и не единственным, то, во всяком случае, самым надежным источником информации о структуре промежуточных метастабильных состояний. Кроме того, для выяснения принципов пространственной организации белков существенный интерес представляют количественные оценки основных факторов стабилизации двух сравнительно часто встречающихся регулярных форм пептидной цепи - а-спирали и -структуры. Поэтому желательно, чтобы пространственная структура выбранного для расчета белка содержала наряду с неупорядоченными участками также вторичные, регулярные структуры обоих видов. Понимание структурной организации белковых молекул не является конечной целью, а необходимо для последующего изучения их биологического действия, т.е. решения проблемы структурно-функциональной организации белков. Поэтому важно, чтобы белок, выбранный в качестве простейшего для изучения его структурной организации, оказался бы и удачным модельным объектом для установления принципов взаимосвязи между структурой и функцией. Он должен обладать простой и хорошо изученной экспериментально функцией. [c.427]

    Поскольку скорости латеральной диффузии белков в биомембранах значительно ниже скорости их диффузии в цитозоле (а следовательно, и время удержания белковых ансамблей в мембране продолжительнее, чем в цитозоле), пространственно-временное распределение ферментов в мембране может контролировать состояние ферментов цитозоля. И в этом смысле мембранные структуры интегрируют клеточный метаболизм. Подчеркнем, что такое метастабильное состояние возможно лишь в живой, метаболизирующей клетке. [c.55]

    Конформации с величинами (У сщ = О и 6,2 ккал/моль, а также некоторые другие представляют интерес в связи с результатами, полученными Крейтоном [7] при исследовании процесса укладки денатурированной белковой цепи и локализации у метастабильных промежуточных продуктов дисульфидных связей. На разных стадиях окисления восстановленного белка Крейтон обнаружил продукты с S-S-мостиками между ys и ys , ys и ys , ys и ys . В конформации с энергией 6,2 ккал/моль ос-татю ys и ys оказываются сближенными. Соответствующая конформация у фрагмента Arg - ys была глобальной (см. табл. IV.8), а структура, близкая к экспериментальной, проигрывала ей 2,8 ккал/моль. У свободного фрагмента Arg -Arg последняя оказалась уже на 3,1 ккал/моль более предпочтительной, а у фрагмента Arg -Tyr - на 4,1 ккал/моль. Поэтому можно полагать, что метастабильное конформационное состояние молекулы БПТИ с дисульфидным мостиком ys - ys характерно для ранней стадии ренатурации белка. Глобальная и близкие ей низкоэнергетические структуры могут при удлинении цепи привести к сближенности остатков ys и ys , ys и ys . В связи с этим обстоятельством низкоэнергетические структуры разных типов, энергии которых отмечены в табл. IV.9 звездочками, оставлены для дальнейшего анализа. [c.444]

    Денатурация — любые вызванные физическими и химическими воздействиями изменения, которые при сохранении первичной структуры белка сопровождаются большей или меньшей потерей его биологической активности и других индивидуальных свойств белка. При денатурации ослабляются гидрофобные взаимодействия, разрываются водородные связи, а в присутствии восстановителей и дисульфидные связи. Денатурация с разрывом невалентных связей обычно обратима. Путем образования новых невалентных связей, а также благодаря взаимодействию с денатурирующим веществом новая конформация стабилизируется. Возникающее метастабильное состояние при восстановлении физиологических условий может вернуться к нативной конформации ренатурация). Принципиально возможна ренатура-ция и при восстановительном расщеплении дисульфидных связей (рис. 3-8). [c.358]

    Конечно, все сказанное здесь носит скорее гипотетический, оценочный характер и, вероятно, еще недостаточно для конструктивного решения проблемы. Как мы указывали, неопределенности, связанные с выбором конформаций отдельных остатков и расплывание на больших расстояниях приводят к тому, что главную роль в формировании пространственной структуры могут играть уже гидрофобные взаимодействия. Если предположить, что только эти взаимодействия формируют пространственную структуру, то для поиска оптимальной структуры необходим совсем иной критерий. Тогда молекулу белка, грубо говоря, можно представить в виде бус, в которых более или менее случайно разбросаны белые и черные бусинки, соответствующие гидрофильным и гидрофобным остаткам. Решение оптимальной задачи в этом случае сводится к нахождению такой пространственной структуры, в которой возможно большее число белых бусинок находится на поверхности глобулы, а возможно большее число черных — внутри и в контакте друг с другом. Конечно, имея ввиду формирование структуры белка с К-конца, требуется найти соответствующее метастабильное состояние. Эта задача совсем не так проста, поскольку для ее решения требуется математически сформули- [c.159]


    Все взаимосвязанные реакции, которые, в сущности говоря, и составляют жизнь живой клетки, зависят от ферментов. Репликация генетической информации, ее преобразование в инструкции для синтеза специфических белков (транскрипция и трансляция), самый синтез этих белков — каждый из этих процессов зависит от специфических ферментов, которые в свою очередь образуются в результате этих процессов. Более того, все реакции промежуточного обмена веществ, поставляющие строительный материал и энергию для образования новых и жизнедеятельности старых клеток, катализируются ферментами, синтезированными под контролем ДНК ядер, хлоропластов и митохондрий. Б задачу этой книги не входит рассмотрение вопроса о том, возможна или не возможна жизнь. Ясно одно жизнь как самопро-являющееся, самовоспроизводящееся, метастабильное состояние невозможна без ферментов. Главное, чему учит нас энзимология, коротко состоит в следующем все явления жизни, начиная от самых простейших реакций до сложных процессов человеческого сознания и мышления, могут быть описаны с помощью понятий, определяющих химические и физические свойства атомов, ионов и молекул. [c.15]

    Переход молекул в метастабильное состояние и последующие процессы переноса энергии можно зарегистрировать методом ЭПР. Первые исследования спектров ЭПР облученных тканей правел в начале 60-х гг. Циммер. В. последующие годы число таких исследований непрерывно возрастало. Установлено, что в облученной жлетке возникают свободные радикалы, их число зависит от дозы облучения. В диапазоне низких доз число радикалов возрастает быстро с увеличение дозы облучения, в области высоких доз — значительно медленнее. Вероятно, это связано с рекомбинацией радикалов, возникающих в высоких концентрациях при больших дозах облучения. Идентификация свободных радикалов затруднительна. Различные биологически активные молекулы имеют близкие значения радиационно-химических выходов радикалов. Следовательно, на единицу. поглощенной энергии возникает лримерно равное количество радикалов ДНК, белков, липидов и других органических молекул. Все они,. по-видимому, вносят вклад в суммарный сигнал ЭПР. Помимо метода ЭПР для выявления свободнорадикальных состояний в клетках используют и другие биофизические методы. Б. Н. Тарусов и его сотр. на кафедре биофизики МГУ регистрировали хемилюминес-ценцию облученных тканей, в работах Ю. П. Козлова использовали метод. привитой сополимеризации мономеров, вводимых в ткани до облучения. [c.130]

    Рассмотренные модели белкового свертывания содержат ряд общих черт принципиального порядка, наличие которых совершенно неизбежно при изучении явления методами статистической физики и равновесной термодинамики. Во всех модельных описаниях динамики белковой цепи предполагают равновесность и двухфазность процесса, т.е. основываются на теории двух состояний Брандтса [214] (подробно см. гл. 11). В подтверждение этому обычно ссылаются на работы 1960-х и начала 1970-х годов, посвященные экспериментальному исследованию механизма денатурации малых белков. Однако единство моделей в этом отношении отнюдь не следует из существования однозначной трактовки результатов эксперимента. Напротив, большая часть опытных данных, особенно полученная позднее, свидетельствует о более сложном характере процесса. Дело в том, что предположение о двухфазном равновесном механизме свертывания белковой цепи становится неизбежным при выборе чисто статистического, феноменологического подхода, не учитывающего конкретную гетерогенность аминокислотной последовательности и обусловленную ею конформационную специфику. Кроме того, представление белкового свертывания в виде монотонного увеличения популяции одного оптимального состояния при одновременном, точно таком же уменьшении популяции другого оптимального состояния и при отсутствии видимого количества промежуточного метастабильного состояния накладывает существенное ограничение на предполагаемую динамику процесса и упрощает его рассмотрение. В этом простейшем варианте свертывания белковой цепи профиль популяции ( У) выражается зависимостью свободной энергии от степени упорядоченности, имеющей больцмановский вид 1п . Другая общая черта касается представления о нативной конформации белковой молекулы. Во всех моделях важнейшей характеристикой упорядоченного состояния белка считается глобулярность его пространственной организации. Под глобулой подразумевается структура, удовлетворяющая следующим двум условиям. Во-первых, размер глобулы значительно превышает эффективное расстояние действия сил, ее формирующих. Это условие позволяет выразить свободную энергию глобулы через ее объем и поверхность. Во-вторых, глобула предполагается структурно гомогенной, что избавляет от учета гетерогенности белковой цепи и неравномерности упаковки аминокислотных остатков в нативной конформации. [c.301]

    С. Левинталем [3]. Оно заключается в том, что структура нативного белка не обязательно должна обладать самой низкой энергией Гиббса, чтобы быть стабильной и свертываться спонтанно. В силу своей сложности молекула белка может находиться в метастабильном состоянии, т.е. отвечать не глобальному, а одному из локальных минимумов энергии. Еще задолго до этого, в 1935 г., Э. Бауэр — автор первого труда по теоретической биологии, видел в особом деформированном состоянии молекул специфику структурной организации белков, определяющую их биологические свойства [4]. Представление о метастабильном состоянии белковых молекул и о достаточной устойчивости этого состояния привело к формулировке так называемой кинетической гипотезы свертывания белка (Д. Уетлауфер и С. Ристоу [5]). В настоящее время не существует экспериментального метода, с помощью которого можно было бы различить стабильное и нестабильное состояние белковой молекулы. Конечно, при образовании такой сложной структуры априори нельзя исключить ситуацию, при которой глобальный минимум энергии окажется окруженным высоким потенциальным барьером и поэтому явится кинетически недостижимым. В данной главе и далее обсуждаются главным образом экспериментальные исследования процессов свертывания и развертывания белков, причем наибольшее внимание сосредоточено на молекулярных аспектах денатурации. [c.339]

    На рис. Ш.5 представлены основные этапы предполагаемого пути свертывания белковой цепи, содержащей шесть остатков ys и имеющей в окончательной глобулярной структуре три дисульфидных мостика. На рис. Ш.6 приведены кинетические кривые денатурированного и нативного состояния белка и двух промежуточных метастабильных состояний с одной и двумя дисульфидными связями. Эти кривые, также гипотетические, иллюстрируют кинетику изображенного на рис. III.5 механизма укладки белковой цепи с точки зрения S-S-связей. При гаше-яии реакции тиол-дисульфидного обмена к моменту времени tp все мо-яекулы белка будут стабилизированы в развернутой форме. К моменту ti наибольшее количество молекул будет содержать одну дисульфидную связь, а к tji - две. Следовательно, времена tj и 1ц - наиболее под-кодящие для прекращения взаимодействий остатков ys и выделения аакопившихся промежуточных продуктов I и П. Конформационный переход между двумя формами состояния II (на рис. Ш.5 указан пунктирной стрелкой) совершается столь быстро, что не влияет на другие процессы. [c.365]

    K. Анфинсена [138]. В литературе встречается также иное мнение, согласно которому молекула белка находится в метастабильном состоянии, т.е. отвечает не глобальному, а одному из локальных минимумов свобод, ной энергии. Такая точка зрения нашла отражение в так называемом парадоксе К. Левинталя [139] и кинетической гипотезе свертывания белка Д. Уетлауфера и С. Ристоу [140]. Однако задолго до публикации этих работ (в 1935 г.) Э. Бауэр - автор первого труда по теоретической биологии, разработал концепцию, в которой специфика структурной организации белка, определяющая его биологические свойства, объяснялась особым деформированным состоянием молекул [141]. Представление, развитое в работах [139-141], хотя еще и привлекается в энзимологии при трактовке механизма фермент-субстратных взаимодействий [142-149] (правда, все реже и только для феноменологического описания), в исследованиях нативных конформаций почти утратило свое былое значение. [c.240]

    Сборку -структуры венчает образование дисульфидной связи ys - ys , которая вместе со связью ys °- ys обнаруживается в третьем ди-88-продукте. Но что удивительно, оба 8-8-мостика, являясь правильными, не делают данное метастабильное состояние прямым промежуточным продуктом на пути к нативной трехмерной структуре белка, Т, Крейтон показал, что еще на стадии образования моно-88-продуктов свободная сульфгидрильная группа остатка ys предпочитает реагировать не с группой SH остатка ys , а с линейным дисульфидным реагентом RSSR, образуя производное с 8-8-мостиком ys -8R, В результате накапливаются продукты ( ys - ys , ys -8R) и ( ys - ys , ys - ys , ys 5-8R), которые исключают участие остатка ys в образовании как второй, так и третьей белковой связи 8-8, завершающей создание системы дисульфидных мостиков БПТИ. Промежуточный продукт (Суз - ys , ys - ys ), казалось бы, ближе всего подошедший к нативной конформации БПТИ, удаляется от нее и переходит в два других ди-SS-продукта, содержащих по одной неправильной дисульфидной связи (см, рис, IV. 17), Однако метастабильные состояния ( ys - ys , ys - ys ) и ( ys - ys , ys - ys ) также неустойчивы и быстро восстанавливаются до моно-55-продукта ( ys °- ys ), т.е. продукта, который уже существовал в начале свертывания. Совершен холостой оборот и процесс [c.478]

    Вопрос О кооперативных процессах в этих структурах и их возможной роли имеет свою историю. Впервые на это обратил внимание Шанже (см. [22]), затем эти идеи были развиты и детально обсуждены в монографии [23]. В работе Бланкета [24] рассмотрен фазовый переход в системе встроенных белков. Принято, что белки могут находиться в двух состояниях, Л и В, и взаимодействовать друг с другом. При этом переходы А В могут носить кооперативный характер, что продемонстрировано в [24] с помощью модели Изинга. Подчеркнем, кооперативность — наиболее важное свойство модели. Для ее реализации необходима сплошная (или целостная) система белков в противном случае взаимодействие между белками ослабевает и фазовый переход становится не кооперативным. Для сопряжения с клеточным циклом предполагается, что после митоза в мембране реализуется состояние А. Переход в другое состояние может осуществляться при сильном внешнем воздействии (например, факторов роста или иных стимуляторов), оно же является сигналом к переходу в 5-фазу (синтез ДНК). В расчетах система встроенных белков фигурирует как однокомпонентная. Тем не менее вопрос о возникновении метастабильных состояний при этом не обсуждается, в связи с чем и возникает необходимость сильного внешнего стимула. [c.150]

    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]

    Имеется еще одно возражение против гипотезы о расплавленной глобуле, использующейся вместе с аппаратом равновесной термодинамики и формальной кинетики для объяснения экспериментальных фактов. Конкретной теоретической основой интерпретации данных о денатурации служит термодинамическая теория двух состояний Брандтса [12, 13]. Как уже отмечалось, белковая молекула в растворе, согласно этой теории, может быть представлена большим количеством микросостояний. Все они входят в состав либо распределения N (нативное макросостояние белка), либо О (денатурированное макросостояние). Теория Брандтса сделала возможным относительно простой термодинамический анализ конформа-ционного перехода N — О в предположении, что реализующиеся микросостояния не являются чем-то вновь созданным, а присутствуют в распределении N и О. Это означает, что в теории постулируется отнюдь не очевидное положение об отсутствии новых промежуточных конформационных состояний в области перехода N - О. Следовательно, главный критерий справедливости теории двух состояний Брандтса состоит в требовании отсутствия максимумов, минимумов и потенциальных ям в наблюдаемых изменениях энтальпии и энтропии при переходе от О к N (и наоборот). Иными словами, если образование трехмерной структуры белка происходит, как того требует теория двух состояний, путем постоянного усложнения и приближения к нативному состоянию, то изменения энтальпии, энтропии и свободной энергии по ходу ренатурации должны быть монотонными. Отсутствие экстремумов означает отсутствие между нативной структурой и статистическим клубком метастабильных промежуточных состояний. Механизм сборки белка проходит в этом случае в одну стадию. А теперь обратимся вновь к обсуждаемой гипотезе о расплавленной глобуле в которой постулируется образование на пути к нативной структуре близкое к ней промежуточное состояние. При существовании достаточно устойчивых обнаруживаемых экспериментально интермедиатов зависимости изменений энтальпии, энтропии и свободной [c.85]

    На основе экспериментального подхода, объединяющего отмеченные выше и некоторые другие методы, можно проводить изучение денатурации по строго логической и апробированной схеме. Она прежде всего включает получение информации о наличии дисульфидной связи в любом промежугочном продукте, что свидетельствует о сближенности соответствующих участков его полипептидной цепи. Такие данные о серии продуктов, например о моно-8-8-производных, образовавщихся на первом этапе ренатурации, создают о каждом из них специфическое стереохимическое представление. Сопоставление таких (а именно детерминированных числом и положением дисульфидных связей) представлений о всей гамме метастабильных промежуточных продуктов на пути ренатурации от флуктуирующего клубка до нативной трехмерной структуры позволяет выделить ряд связанных между собой продуктивных промежуточных состояний внутримолекулярных конвертируемых реорганизаций, ведущих этот ряд к нативной конформации. Дисульфидная связь как бы делает видимым весь процесс сборки белковой глобулы. В наиболее полной мере имеющиеся возможности реализованы пока лишь для одного белка - бычьего панкреатического трипсинового ингибитора. [c.381]


Смотреть страницы где упоминается термин Белок метастабильные состояния: [c.240]    [c.439]    [c.478]    [c.479]    [c.253]    [c.370]    [c.378]    [c.382]    [c.439]    [c.479]    [c.83]    [c.86]    [c.473]    [c.477]    [c.482]    [c.59]    [c.369]    [c.376]    [c.379]    [c.83]    [c.86]    [c.473]    [c.482]    [c.126]    [c.153]   
Проблема белка (1996) -- [ c.339 , c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Метастабильное состояние

Метастабильность



© 2025 chem21.info Реклама на сайте