Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катехоламин образование

    Важнейшими продуктами метаболизма в нейронах являются катехоламины, к которым относятся три близких по структуре производных тирозина дофамин, норадреналин и адреналин. Дофамин и норадреналин служат нейромедиаторами. У многих беспозвоночных важную роль играет также октопамин [61], синтезирующийся из тирамина (рис. 16-8). Обратите внимание на взаимосвязь предшественник — продукт в ряду дофамин, норадреналин, адреналин. Путь биосинтеза этих нейромедиаторов включает реакции декарбоксилирования и гидроксилирования— типы реакций, имеющих место при образовании других медиаторов. Наиболее важным процессом, завершающим действие выделившихся катехоламиновых медиаторов, является обратное поглощение их нейро- [c.335]


    Фактор роста нерва также стимулирует поглощение уридина, образование полисом, синтез белков, липидов, РНК и потребление глюкозы. Благодаря этому он способствует росту и выживанию симпатических и сенсорных нейронов. NGF активирует рост аксонов и дендритов, осуществляя контроль за сборкой микротрубочек. Если антитела против NGF вводятся мыши, ее симпатическая нервная система дегенерирует. Роль NGF как трофического фактора можно проиллюстрировать на примере его способности индуцировать тирозингидроксилазу — ключевой фермент синтеза катехоламинов. [c.327]

    Выше приведены реакции образования катехоламинов из тирозина (рис. 1). [c.15]

    Большинство ферментов гликолиза локализовано в саркоплазме мышечных волокон. Ферменты фосфорилаза и гексокиназа, обеспечивающие начальные реакции гликолиза, легко активируются при повышении концентрации АДФ и неорганического фосфата в саркоплазме. Кроме того, образование активной формы фосфорилазы стимулируется катехоламинами и ионами Са , уровень которых повышается при мышечном сокращении. Все это способствует быстрому подключению гликолиза к ресинтезу АТФ [c.312]

    Повышение содержания циклических нуклеотидов способствует такт же, по-видимому, возникновению более стойких изменений в нейронах. Например, стимуляция хромаффинных клеток мозгового слоя надпочечников ацетилхолином, высвобождающимся в синапсах, индуцирует повышение активности тирозин — 3-монооксигеназы, участвующей в образовании катехоламинов. Предполагается, что этот эффект обусловлен воздействием на цитоплазматическую протеинкиназу, которая проникает в ядро и оказывает влияние на богатый лизином гистон Н1 [67а]. [c.339]

    Биохимия его действия заключается в функционировании ферментов, катализирующих гидроксилирование лизина и пролина при образовании коллагена в гидроксилировании дофамина с образованием норадреналина в метаболизме холестерина (возможно, что также реакциями гидроксилирования) в метаболизме катехоламинов и стероидных гормонов в предохранении глутатиона и 5Н-групп белков от окисления в восстановлении [c.270]

    Тирозин-гидроксилаза регулируется по принципу обратной связи катехоламинами, а также цДМФ. Образование дофамина находится под контролем декарбоксилазы ароматических аминокислот, обладающей широкой субстратной специфичностью. Синтез норадреналина катализируется медьсодержащим ферментом — дофамин-р-гидроксилазой. И наконец, образование адреналина, связанное с метилированием норадреналина, происходит под действием фенилэтаноламин-Л -метилтрансферазы в цитоплазме адреналин-продуцирующих клеток. Донором метильных групп является 5-аденозилметионин. Новосинтезированные катехоламины поступают в хромаффинные гранулы посредством активного транспорта, где связываются с АТФ. Под действием нервного импульса происходит перемещение гранул к цитоплазматической мембране и выброс катехоламинов в экстрацеллюлярное пространство методом экзоцитоза. [c.155]


    Американский физиолог У. Кеннон назвал адреналин гормоном страха, борьбы или бегства . Под воздействием стрессового фактора увеличивается выброс катехоламинов в кровь, что, кроме рассмотренных эффектов, стимулирует образование гормонов гипофиза (АКТГ) и коры надпочечников. Последние обеспечивают формирование адаптивных изменений в организме, способствующих повышению устойчивости его к действию стресс-фактора (см. главу 13). [c.147]

    Для изучения скорости активации АЦ про водят реакцию в пробах объемом 50 мкл в течение различных промежутков времени (О— 40 мин). Инкубацию проводят в аналогичных условиях в присутствии ГИДФ (10 5 М). Для изучения влияния катехоламинов на активацию АЦ в соответствующие пробы вносят ГИДФ (10 М) и изопротеренол (10-5 М). Гуаниловые нуклеотиды активируют фермент медленно, что приводит к появлению лаг-фазы на графике временной зависимости образования продукта реакции. Изопротеренол увеличивает скорость активации фермента, что приводит к уменьщению лаг-фазы. Ее длительность определяют по перёсечению линейного участка графика временной зависимости образования продукта с осью абсцисс. [c.369]

    При гидроксилировании дофамина аскорбиновой кислотой в присутствии медьсодержащего фермента [уравнение (10-57)] образуется нор-адреналин (норэпинефрин). Последующее метилирование приводит к образованию важного гормона адреналина (эпинефрина). Имеются два основных пути катаболического разрушения катехоламинов. Они показаны на рис. 14-20 на примере адреналина. Моноаминооксидаза (МАО) вызывает окислительное расщепление, сопровождающееся дезаминирб-ванием. Последующее окислительное отщепление боковой цепи в сочетании с метилированием дает такие конечные продукты, как ванилиновая кислота, выделяемая с мочой. Второй катаболический путь состоит в непосредственном О-метилировании под действием катехоламин — 0-метилтрансферазы (КОМТ), очень активного фермента, присутствующего в нервных тканях. Метаболиты почти не обладают какой-либо заметной физиологической активностью и могут экскретироваться как таковые или подвергаться дальнейшему окислительному распаду,  [c.148]

    Наряду с электродами из углеродного волокна для определения аминокислот применяют медные ультрамикроэлектроды. На поверхности меди в слабокислых или щелочных буферных растворах образуется тонкий слой оксида меди, который растворяется при +0,15 В в присутствии аминокислот с образованием соответствующих медных комплексов. Ток окисления меди пропорционален концентрации аминокислоты в растворе. Чувствительность электрода зависит от скорости реакции комплексообразования и от объемной скорости потока жидкости в капилляре. С помощью медных электродов определяют также белки, пептиды, сахара, катехоламины. [c.586]

    Реакции декарбоксилирования приводят к образованию биогенных аминов. Это - биологически активные соединения, выполняющие различные регуляторные функции. Примером могут служить биогенные амины, образующиеся в ходе последовательных реакций, начиная с тирозина, триптофана, глутаминовой кислоты или гистидина. Реакции протекают сначала как декарбоксилиро-вание соответствующих аминокислот, в результате чего образуются биогенные амины, обладающие определенной физиологической активностью. Так, гистамин известен своим участием в различных аллергических реакциях, а производные тирамина гидроксилируются и превращаются в ряд соединений, называемых катехоламинами (ДОФА, норадреналин, адреналин), которые известны как медиаторы возбуждающего действия в нервной системе. [c.14]

    Вполне возможно, что в животном организме в метаболизме кремния может участвовать и другой тип хелатного соединения (наиример, анионные комилексы тииа катехина). В таком случае, по Бауманну [3906], хелатное соединение оказывается стабильным только при рН>7, а выделение кремневой кислоты в свободном состоянии идет ниже этого значения pH. Никаких хелатных соединений кремния не было выделено из. тканей животных. Однако присутствие целого ряда молекул со структурой, напоминающей катехин, как, например, катехоламины, не исключает возможности образования такого тииа соединений в организме животных. Подобные хелатные соединения обсуждались в гл. 1 и 2. [c.1088]

    Токсическое действие. Р. отличается высокой токсичностью для любых форм жиз-Бш, широким спектром и большим разнообразием клинических проявлений токсического действия в зависимости от свойств веществ, в виде которых металл поступает в организм (пары Р., неорганические и органические соединения), пути поступления и дозы. В основе механизма действия Р. лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов с нуклеофильными лигандами. Установлено включение Р.(II) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков. В начальные сроки воздействия малых концентраций Р. имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Отмечены фазовые изменения в содержании катехоламинов в надпочечниках. Наблюдается возрастание моноаминоксидазной активности митохондриальной фракции печени. Показано стимулирующее действие неорганических соединений Р. на развитие атеросклеротических явлений, но эта связь нерезко выражена. Пары Р. проявляют нейротоксичность, особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение. Неорганические соединения Р. обладают нейротоксичностыо. Имеются сведения о гонадотоксическом, змбриотоксиче-ском и тератогенном действии соединениях Р. [c.484]


    Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая—нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием катехоламинов. [c.403]

    Нарушение метаболизма сердечной мышцы при ишемической болезни сердца. Для ишемизированного миокарда характерны сниженное окислительное фосфорилирование и повышенный анаэробный обмен. Раннее увеличение гликогенолиза и гликолиза за счет имеющегося в сердечной мышце гликогена и глюкозы, усиленно поглощаемой миокардом в начальной стадии ишемии, происходит в результате повышения внутриклеточной концентрации катехоламинов и цАМФ, что в свою очередь стимулирует образование активной формы фосфорилазы —фосфорилазы а и активацию фосфофруктокиназы—ключевого фермента гликолиза. Однако даже максимально усиленный анаэробный метаболизм не способен длительно защищать уже поврежденный гипоксический миокард. Очень скоро запасы гликогена истощаются, гликолиз замедляется вследствие внутриклеточного ацидоза, который ингибирует фосфофруктокиназу. [c.660]

    Метилирование фосфолипидов. Представляется вероятным, что метилирование РЕ связано с передачей сигнала через клеточные мембраны метилтрансфераза, расположенная на внутренней стороне многих клеточных мембран, метилирует до фосфа-тидил-Н-монометилэтаноламина. Вторая метилтрансфераза, локализованная на внешней стороне мембраны, осуществляет его дальнейшее метилирование до РС. При этом донором метильных групп в каждом случае также является 8-аденозилме-тионин. Метилирование РЕ влияет на текучесть мембраны, оно стимулируется нейромедиаторами ряда катехоламина, например адреналином, и приводит к поступлению в клетку ионов кальция, образованию сАМР, высвобождению гистамина и т. д. [4]. [c.39]

    NGF выполняет функцию не тольдо фактора выживания , но и фактора дифференциации . Это ясно видно на клетках фео-хромоцитомы (РС 12)—линии опухолевых клеток, происходящих из (не нейрональных) хромаффинных клеток мозгового вещества надпочечников. В отличие от нервных клеток они делятся в клеточной культуре и будучи хромаффинными клетками способны к синтезу, хранению и высвобождению катехоламинов. Под влиянием NGF клетки феохромоцитомы дифференцируют далее в направлении нервных клеток они останавливают пролиферацию и способствуют нейритным процессам становятся электровозбудимыми и чувствительными к ацетилхолину и развивают способность к образованию синаптических контактов. [c.327]

    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Гормоночувствительная липаза является важнейшим регуляторным ферментом процессов липолиза. Многие гормоны являются активаторами этого фермента. К гормонам, которые быстро промотируют липолиз, относятся прежде всего катехоламины (адреналин и норадреналин) и глюкагон, которые стимулируют активность аденилатциклазы — фермента, катализирующего образование из АТФ циклического АМФ (цАМФ). Механизм активации тригли-церидлипазы в этом случае аналогичен механизму гормональной стимуляции фермента гликогенолиза — гликогенфосфорилазы, т. е. осуществляется путем ковалентной химической модификации по механизму фосфорилирования — дефосфорилирования (гл. 18). [c.327]

    В растениях-продуцентах имеются специальные энзимы, осуществляющие реакцию Пиктэ—Шпенглера. Однако этот химический процесс может достаточно эффективно протекать и без всяких ферментов в условиях, близких к физиологическим. С этим связано образование так называемых животных алкалоидов . Если в организме млекопитающего создается избыток альдегидов или фенилэтиламинов, то происходит неферментативный синтез тетрагидроизохинолинов. Как мы видели в разд. 6.2, фенилалкиламины (катехоламины) играют важную роль в регуляции деятельности центральной нервной системы. Их избыток наблюдается при некоторых психических расстройствах. Возникновение симптомов шизофрении, депрессий, паркинсонизма связывают не только с высоким уровнем катехоламинов в мозгу, но и с неферментативным синтезом алкалоидов. Например, у млекопитающих обнаружено основание 6.231, которое, как нетрудно видеть, возникло при реакции дигидроксифенилэтиламина (ДОФА. разл. 6.2) и пиридоксаля 6.136. Избыток ацетальдегида создается в организме человека после приема алкоголя, так как последний окисляется в ацетальдегид под действием фермента алкогольдегидрогеназы. В этих условиях в мозгу образуется салсолинол (см. формулу 6.229), который, помимо прочего, обладает свойством стимулировать так называемые центры удовольствия головного мозга. Это служит одним из факторов развития пристрастия к алкоголю. [c.479]

    Мозговой слой надпочечников является по существу частью нервной системы и регулируется ею. Адреналин и норадреналин-это водорастворимые амины, образующиеся из тирозина через 3,4-ди-гидроксифенилаланин (дофа), как показано на рис. 25-7. Еще один промежуточный продукт этого пути превращения тирозина - 3,4-дигидроксифенилэтиламин, известный под названием дофамина,-обладает гормональными свойствами. Адреналин, норадреналин и дофамин называют катехоламинами, поскольку их можно рассматривать как производные катехола, или 1,2-дигидроксибензола (рис. 25-7). Катехоламины образуются также в мозгу и нервной системе, где они функционируют в качестве нейромедиаторов. При болезни Паркинсона нарушается образование дофамина в мозгу, [c.787]

    Метаболизм свободного метионина до цистеина начинается с образования 8-аденозилметионина (схема 2.7), реакция катализируется метионин-аденозилтрансферазой (КФ 2.4.2.13). 5-Аденозилметионин является главным донором метильных групп в мозге, необходимых для метилирования катехоламинов, гистамина, фосфатидилэтаноламина, нуклеиновых кислот. [c.58]

    Токсическое действие. Обилий характер. При использовании для хирургического наркоза в ряде случаев вызывает тяжелые поражения печени, особенно при повторном применении. Вызываемую Б. аритмию связывают с развивающейся сенсибилизацией сердечной мышцы к катехоламинам снижает иммунологическую резистентность. Проникает через кожу. Токсическое действие обусловлено не только прямым влиянием Б., но и образованием токсических метаболитов (трифторуксусной кислоты, трифторэтанола, гидрата трифторацетальдегида) есть указания на цитостатическое действие. При хирургическом наркозе вызывает повышение потребления кислорода, гипертермию и кислородную недостаточность после наркоза. [c.643]

    Предполагают, что механизм регулирования кровяного давления этими препаратами связан с образованием связей между катехоламинами (адреналином, норадренажном) и а-рецепторами центральной или периферической нервной системы. Интересно, что препараты, снижающие кровяное давление, по строению сходны з описанными выше психотропными препаратами. [c.541]

    Метод дифференциальной вольтамперометрии с двойным импульсом, тесно связанный с псевдопроизводным вариантом, применяли для определения катехоламинов [44]. Образование пленки на платиновых электродах препятствует использованию вольтамперометрии с линейной разверткой потенциала или [c.419]

    Возможность применения метода вольтамперометрии с линейной разверткой потенциала для получения аналитической и электрохимической характеристик биологически активных катехоламинов, таких, как допамин и норэпинефрин, была четко показана Адамсом с сотр. [45, 46]. Однако затруднения, связанные с недостаточной чувствительностью, с восприимчивостью электрода к отравлению и с помехами от конкурирующих реакций, приводят к тому, что этот метод имеет существенные ограничения. Попытки применить дифференциальную импульсную вольтамперометрию [44, 47] не удались по двум причинам во-первых, продукты окисления катехоламина вступают в последующие химические реакции с образованием твердых осадков на электроде, в результате чего происходит непрерывное снижение высоты пика (рис. 6.25) во-вторых, хемосорбция многочисленных веществ на обычных платиновых [c.420]

    Он образуется в результате метоксилирования серотонина под влиянием окси-индол-О-метилтрансферазы. В этой реакции 0-метилирование гидроксииндояа приводит к образованию веществ с повышенной биологической активностью, в противоположность О-метилированию катехоламинов. Установлено участие мелатонина в регуляторных механизмах деятельности половых желез. [c.281]

    С-белков. таким как (3 и/или у-с бъединицы. Обшей чертой всех рецепторов является также наличие одного или более участков N-связанного Iликозилирования в об.шсти 1М-конца и потенциальных участков фосфорилирования на цитоплазматических фрагментах. Участки фосфорилирования включают несколько остатков серина и треонина в области третьего внутриклеточного фрагмента и С-конца. Трансмембранные сегменты содержат много остатков пролина и глицина. Эти аминокислотные остатки могут образовывать кинки в а-спиралях, участвующие в образовании лиганд-связывающих карманов, а также играть роль в передаче на цитоплазматическую поверхность рецептора конформационных изменений, сопровождающих связывание лиганда. Связывание лиганда также имеет общие черты у разных рецепторов. При этом консервативные заряженные аминокислотные остатки в трансмембранных сегментах служат, по-видимому, противоионами для положительно заряженного ретиналя, ацетилхолина или адреналина, связывающихся с соответствующими рецепторами. Так, в молекуле родопсина ретиналь взаимодействует с опсином с области лизина на 7-м трансмембранном сегменте. Напротив, для связывания катехоламина с (3-адренорецептором необходима аспарагиновая кислота во 2-м трансмембранном сегменте (см. обз. Крутецкая, Лебедев, 19926). [c.8]

    Специфические соединения, играющие роль биохимических сигналов,— нейромедиаторы, гормоны и иммуноглобулины—связываются с особыми рецепторами (интегральными белками), экспонированными с наружной стороны клеточной мембраны, и передают информацию через нее в цитоплазму. Например, Р-адренергический рецептор, который стереоспецифически связывает катехоламины, располагается на поверхности клеток-мищеней. Связывание с ним катехоламинов стимулирует активность аденилатциклазы, локализованной с внутренней стороны мембраны и катализирующей образование сАМР из АТР (гл. 44). Таким образом, информация, носителем которой во внеклеточной среде являлся специфический катехоламин, оказывается перенесенной внутрь, и ее последующую передачу осуществляет второй посредник, сАМР. Сопряженная с рецептором аденилатциклазная система, содержащая сти- [c.145]

    Скрещивание двух сублиний продемонстрировало различие в одной паре генов неагрессивность доминировала над агрессивностью. Активность всех трех ферментов сегрегировала вместе с поведенческим признаком. Вполне возможно, что повышение активности этих ферментов обусловлено снижением уровня их деградащш. Помня о тех изменениях, которые вызывают в белках мутации, и о потенциальных последствиях таких изменений для функции фермента, предложим ряд гипотез для объяснения этих данных. Например, все три фермента могут содержать одинаковую полипептидную цепь, изменяемую мутацией может быть уменьшена активность фермента, осуществляющего деградацию три структурных гена могут быть тесно сцеплены между собой и, наконец, может произойти мутация регуляторного гена, который влияет на все три структурных гена. Возможно также, что тип наследования не является моногенным. В любом случае наличие корреляции между уровнем ферментов и агрессивным поведением не обязательно означает, что высокий уровень ферментативной активности и, следовательно, высокий уровень образования катехоламинов вызывают такое поведение. Поскольку, однако, другие эксперименты также указывают на возможную роль [c.59]

    У людей, получающих глюкокортикоиды, возрастает уровень свободных жирных кислот в плазме крови. Частично это можно объяснить прямой стимуляцией липолиза, поскольку в опытах на изолированных гепатоцитах эти гормоны действительно способствуют высвобождению жирных кислот. Кроме того, глюкокортикоиды снижают потребление и использование глюкозы жировой тканью и тем самым уменьшают образование глицерола поскольку глицерол необходим для этерификации жирных кислот, снижение его содержания приводит к их высвобождению в плазму, В итоге повышение концентрации свободных жирных кислот в крови и сопряженное с этим усиление их превращения в кетоны способствуют развитию кетоза, особенно при инсулиновой недостаточности. Эти эффекты имеют большое значение, но самое важное действие глюкокортикоидов на липидный обмен вытекает из их способности усиливать липолитическое действие катехоламинов и гормона роста. Ниже мы обсудим этот пермис-сивный эффект глюкокортикоидов, [c.214]

    Современный уровень понимания структуры и механизма действия многих рецепторов (ацетилхолиновых, катехоламино-вых, глутаминовых и др.) таков, что оказалось возможным собирать активные рецепторы из компонентов вне клеток — в мембранах липосом — и даже индуцировать с помощью соответствующих мРНК их синтез, встраивание в мембраны и действие в клетках (ооцитах), не содержащих ранее этих образований. [c.295]

    Один из механизмов наркоманий и алкоголизма состоит в имитации наркотиком, этанолом или (и) их метаболитами функций эндогенных соединений, являющихся в норме факторами внутреннего подкрепления , вознаграждения и т.п. (опиоидные пептиды, некоторые катехоламины, сальсолинол и его аналоги и др.). Воздействие на их образование и рецепцию — перспективный путь преодоления состояний абстиненции и зависимости. [c.437]

    Эти результаты свидетельствуют, что процесс аутоокисления кверцетина в присутствии ТМЭДА включает стадию образования анион-радикала кислорода (2.21) и, по-видимому, обусловлен цепным свободнорадикальным окислением (чередование свободнорадикальных реакций 2.22 и 2.23) аналогично тому, как это имеет место при окислении гидрохинонов и катехоламинов [164, 165]  [c.144]

    Гормоны, которые быстро промотируют липолиз, например катехоламины, стимулируют активность аденилатциклазы—фермента, катализирующего превращение АТР в с АМР. Механизм действия в этом случае аналогичен механизму гормональной стимуляции гликогенолиза, рассмотренному выше (см. гл. 19). сАМР путем стимуляции сАМР-зависимой протеинкиназы превращает неактивную гормон-чувствительную триацилглицероллипазу в активную липазу. Липолиз регулируется в основном количеством с АМР, присутствующим в тканях. Следовательно, процессы, вызывающие разрушение сАМР или приводящие к его образованию, оказывают также действие на липолиз. сАМР гидролизуется до 5 -АМР при участии цикло-3, 5 -нуклео-тидфосфодиэстеразы. Этот фермент ингибируется метилксантинами, такими, как кофеин и теофиллин. Поэтому потребление кофе, содержащего кофеин, вызывает существенное и длительное повышение уровня СЖК в плазме крови человека. [c.270]


Смотреть страницы где упоминается термин Катехоламин образование: [c.148]    [c.351]    [c.385]    [c.711]    [c.445]    [c.285]    [c.166]    [c.297]    [c.214]    [c.224]    [c.224]    [c.63]    [c.219]    [c.254]   
Генетика человека Т.3 (1990) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Катехоламины



© 2025 chem21.info Реклама на сайте