Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкены серой

    Процесс гидрокрекинга получил в настоящее время широкое распространение как метод превращения тяжелых дистиллятов сырой нефти в более легкие фракции, которые являются важным сырьем для получения алкенов и аренов. Гидрокрекинг ведут как правило на бифункциональных катализаторах в избытке водорода при температурах до 450 °С и давлениях 15—20 МПа. В этом процессе превращения происходят в два этапа а) разрушение органических соединений серы и азота (это необходимо, так как первые ингибируют гидрирующий компонент, вторые отравляют кислотные центры, ответственные за крекинг) с удалением 5 и N в виде их неорганических соединений б) крекинг углеводородов на поверхности кислотного компонента катализатора с одновременным гидрированием на металлических центрах. [c.89]


    Каталитическое хлорирование применяют для газообразных и жидких алканов. Для хлорирования в жидкой фазе, используют хлориды иода, фосфора, серы, сурьмы, железа, олова [45]. Примесь алкенов играет роль гомогенных катализаторов. Хорошие результаты получают при хлорировании нефтяных фракций (175—275 °С) с низким содержанием аренов. Например, гомогенное каталитическое хлорирование керосиновой фракции проводилось в присутствии иода (массовое содержание 0,04%) при 60 °С в течение 6—7 ч. Гомогенное каталитическое хлорирование происходит в присутствии веществ, способных образовывать свободные радикалы, например тетраэтилсвинца. [c.201]

    Подобно сере и фосфору кремний не способен образовывать л-связи, поскольку боковое перекрывание орбиталей типа Зр—2р и Зр—Зр неэффективно. Вот почему кремний не образует соединений, подобных алкенам и алкинам. Вместе с тем с элементами, обладающи- [c.336]

    Взаимодействие окисей алкенов с соединениями серы [c.593]

    Теплота реакции гидрирования насыщенных алкенов и ароматических углеводородов значительно выше теплоты реакции разложения соединений серы. Это обстоятельство и создает возможность проводить гидрообессеривание прямогонных продуктов в реакторах при мягких условиях без снятия тепла реакции и умеренном повышении температуры продуктов на выходе из реактора. [c.53]

    С повышением парциального давления водорода скорость гидрирования увеличивается и достигается более полное удаление кислорода, серы, азота и металлов, более полное насыщение алкенов и ароматических углеводородов, а также удаление коксообразующих компонентов, т. е. смол и асфальтенов. На промышленных установках гидроочистки дистиллятных продуктов общее давление поддерживается в пределах 2—7 МПа. Содержание водорода в циркулирующем газе должно быть выше 60%, предпочтительно 80— 90%. Кратность циркуляции газа поддерживается в пределах 90— 800 м (при нормальных условиях на 1 м жидкофазного сырья). [c.54]

    В данной главе под термином гидрирование подразумевается не только насыщающее присоединение водорода к алкенам или ароматическим углеводородам, но и такие реакции, как расщепление, удаление серы, азота, кислорода и металлов, проводимые в присутствии водорода обычно с применением катализаторов при повышенных температурах и давлениях. [c.116]


    Незначительные количества некоторых элементов могут служить не ядами, а активаторами. Медь в чистом виде не катализирует насыщения бензола при 225° С, атмосферном давлении и продолжительности реакции 12 сек., но после добавки к меди 1% никеля 79% бензола гидрируются до циклогексана [31]. В качестве гидрирующего катализатора для таких реакций, как превращение бензола в циклогексан или насыщение двойных связей в алкенах, применяют тонкодисперсный металлический никель при температуре не вьппе 220° С. Никель в виде окисла или сульфида менее активен в реакциях насыщения, но при более высоких температурах активно катализирует реакции разрыва связей углерод —сера. [c.142]

    Суммарное влияние парциального давления водорода слагается из раздельных влияний общего давления, концентрации водорода в циркулирующем газе и отношения водород углеводород. С повышением парциального давления водорода скорость гидрирования увеличивается и достигается более полное удаление кислорода, серы, азота и металлов, более полное насыщение алкенов и ароматических углеводородов и удаление коксообразующих компонентов, т. е. смол и асфальтенов. Хотя все эти положительные результаты достигаются за счет увеличенного расхода водорода, целесообразно поддерживать и общее давление и содержание водорода в циркулирую-ш ем газе на максимальном возможном уровне, насколько это допускается ресурсами добавочного водородсодержащего газа и экономическими соображениями. [c.151]

    Сульфиды и меркаптаны обычно являются конечными продуктами взаимодействия серы с углеводородами. Вероятно, сульфиды образуются в результате вторичных реакций меркаптанов с алкенами. [c.273]

    Многочисленные смешанные сульфиды применялись и применяются до сих пор в качестве антиокислителей для смазочных масел. Для получе-лия максимального выхода сульфидов взаимодействие исходных углеводородов, папример терпенов или других высших алкенов, с серой обычно проводят при температуре выше 200° С. Процесс вулканизации каучука, осуществляемый в промышленном масштабе уже около 100 лет, основан на взаимодействии ненасыщенного углеводорода с элементарной серой. [c.273]

    Опубликован обзор [65], дающий некоторые сведения о природе катализаторов, применяемых в рассмотренных выше процессах гидроизомеризации. В табл. 10 показаны результаты изомеризации к-пентана в присутствии различных платиновых катализаторов на обработанной фтором окиси алюминия Б качестве носителя. Опыты на катализаторах с различным содержанием платины показали, что даже минимальная концентрация платины обеспечивает высокую эффективность гидроизомеризации алкана. В условиях, применявшихся в этой серии опытов, содержание алкенов в продукте изменялось от 0,2 до 0,4% мол. Эти исследователи предполагают, что на поверхности катализатора происходит адсорбция алкана с его диссоциацией, ведущая к образованию адсорбированного катиона. При этом становится возможной внутренняя перегруппировка углеродного скелета адсорбированного катиона с достижением статически равновесного соотношения изомеров, [c.193]

    Расход сырья для получения 1 т сульфонола НП-3 (в т) бензола -0,4 алкенов-1 - 0,9 хлорида алюминия - 0,03 триоксида серы - 0,27 гидроксида натрия - 0,15. [c.54]

    Реакции триалкилборанов с нитроалкенами протекают, вероятно, аналогично алкилированию ацилалкенов, однако синтетическое использование этих реакций пока ограничено [397]. Стирилсульф-оксиды и -сульфоны реагируют иначе — с разрывом связи алкенил—сера По-видимому, это также радикальный процесс [398]. Реакции можно использовать для препаративного синтеза замещенных этиленов (схема (192) . В образующейся смеси алкенов обычно преобладает ( )-изомер. [c.434]

    Термически менее стабильными, чем тиираны, являются эписульфоокиси. По данным Г. Хартцела и Дж. Пейджа [27], 1-окиси этилен-, пропилен-, циклогексен- и стиролсульфидов стабильны при обычных температурах, а при нагревании выше 100° С разлетаются с образованием алкенов, серы и сернистого ангидрида  [c.280]

    В соответствии со всем изложенным выше показано [109], что в строго идентичных условиях выход метилциклопентана из н-гексана действительно меньше, чем из изогексанов. Выходы метилциклопентана из 2- и 3-ме-тилпентанов практически совпадали, что, по-видимому, обусловлено практически одинаковыми суммарными благоприятными эффектами. Важной особенностью обсуждаемой работы является то, чго опыты проводили в токе Не с непременной обработкой катализатора перед каждым опытом небольшим количеством водорода. Следует отметить, что кроме метилциклопентана в продуктах реакции присутствовали изомерные гексаны, соответст-вуюшие им алкены, бензол и метилциклопентен. Для рассмотрения участия алкенов как промежуточных продуктов Сз-дегидроциклизации 2- и 3-метилпентанов были соответственно проведены две серии опытов с двойными смесями 2-метилпентан — 2-метилпентены- С и З-метилпентан- С — 3-метилпентены (рис. 41). Анализ кинетических данных (см. рис. 41) привел к заключению [109], что образование метилциклопентана из изомерных гексанов на Pt/ в атмосфере гелия (с предварительной обработкой катализатора водородом) при 310°С происходит двумя параллельными путями 1) через промежуточную стадию образования алкенов и 2) непосредственной циклизацией исходного алкана. При этом также отмечается, что в названных условиях различие в строении 2- и 3-метилпентанов мало влияет на соотн ение путей их Сз-дегидроциклизации. [c.221]


    Аналитическое значение имеют тгкже реакции алкенов с ацетатом ртути(П) и хлоридом серы(1). [c.173]

    В отличие от каталитического крекинга продукты гидрокрекинга имеют насыщенный характер. Ф )акция Сз—С4 представлена пропаном и изобутаном. Бензин также практически не содержит алкенов. Газойли гидрокрекинга, кроме того, менее ароматизированы, чем газойли каталитического ьрекннга. При гидрокрекинге происходит одновременно очистка н( фтяных фракций от серы и других гетероатомов. Таким образом, гидрокрекинг как бы сочетает в себе каталитический крекинг, 1 идрированпе и гидроочистку. [c.308]

    Сильное влияние на процесс напфообразования оказывают фракционный состав, а также содержание сернистых соединений, алкенов, аренов и смол. Эти соединения концентрируются в высококипящих фракциях топлив. Действующие стандарты (табл.) регламентируют содержание в топливах сернистых соединений (общей серы не более 0,2-0,5% мае., меркаптановой серы не более 0,01% мао.), олефинов ( йодное число не более 5-6 г йода ЮО г топлива), смол (фактических смол не более 30-40 мг/100 мл топлива), аренов [c.146]

    Степень чистоты сырья, особенно бутана, имеет исключительно важное значение при изомеризации. Содержание 0,1% алкенов вызывает отравление кат 1лизатора, чрезмерное образование шлама (осадков), снижение глубины превращения. Наличие воды в сырье приводит к разложению хлористого алюминия с образованием гидроокиси алюминия и хлористого водорода. Влажный хлористый водород вызывает заметную коррозию оборудования, а гидроокись алюминия, выпадая в виде тяжелых осадков, забивает аппаратуру и трубопроводы. Сера отравляет катализатор, уменьшает степень превращения, замедляет процесс и вызывает излишний расход катализатора. [c.268]

    Химические свойства этих кислот обычны. Обе дают по две серии сложных эфиров и солей. Электрофильное присоединение к двойной связи проходит нормально, только очень медленно. При озонолизе образуется глиоксиловая кислота ОНС—СО2Н. Нуклеофильное присоединение к двойной связи также возможно, поскольку алкен сопряжен с двумя карбонильными группами. Нагревание любого изомера с водным раствором гидроксида натрия приводит к образованию рацемической яблочной кислоты реакции с алкоксидами или аминами дают соответствующие замещенные янтарные кислоты. [c.258]

    Дипольные моменты алканов как нормальных, так и разветвленных обычно очень малы. Таким образом, практически они почти неполярны. Молекулы 1-алкенов, их цис-изомеров, 1-алкинов, алкилциклоалканов и алкилбензолов характеризуются небольшим дипольным моментом и таковых углеводородов относят к слабополярным соединениям. Ассиметрией и, как следсп вие дипольным моментом, обладают обычно молекулы, состоящие из двух и более атомов различных элементов или функциональных групп. По этой причине углеводороды, содержащие гетероатомы (кислород, азот, сера и др.), практически всегда полярны. [c.24]

    Важный для препаративных целей метод, основанный на обмене кислора на серу, заключается во взаимодействии окисой алкенов с бисульфитом натрия f34i в результате чего образуются натриевые соля р-оксисульфокислот [343]- [c.594]

    Тиокарбонилдиимидазол, полученный из 2 молей имидазола и 1 моля тиофосгена, реагирует с 1,2-диолами и образует циклический тионкарбонат, который под действием триметилфосфита расщепляется с образованием алкенов [25]. Выло высказано предположение, что триметилфосфит отщепляет атом серы и образует карбен [c.173]

    Применение катализаторов в процессах гидрогенизациоппой очистки нефтяных фракций, вероятно, задержалось на много лет вследствие общеизвестного отравляющего действия сернистых соединений на катализаторы, обычно применяемые для гидрирования алкенов. В отсутствие серы алкены легко гидрируются на приготовленных различными способами платине, палладии, железе, кобальте, никеле, меди и других металлах даже при комнатной и более низких температурах. Металлические катализаторы отравляются серой, поэтому для промышленного гидрирования алкенового сырья, содержащего сернистые примеси, применяют окислы или сульфиды молибдена, вольфрама или хрома как самостоятельно, так и в сочетании с окислами или сульфидами металлов группы железа. Эти окисно-сульфид-ные катализаторы обладают высокой активностью при умеренных температурах и повышенных давлениях. [c.128]

    Крекинг-бензины подвергали избирательному гидрированию для удаления серы и диенов без насыщения алкенов (для сохранения высокого октанового числа но исследовательскому методу). Показано [44], что в присутствии сульфидного вольфрам-никелевого катализатора алкены более разветвленного строения гидрируются медленнее, чем менее разветвленные. Присутствие алкенов не подавляет реакции обессеривания, но сернистые соединения сильно тормозят гидрирование алкенов. При этом происходит миграция двойной связи из а-положения вглубь молекулы, но скелетная изомеризация не наблюдается В противоположность этому было обнаружено [57], что в отсутствие сернистых соединений гидрирование 3,3-диметил-бутена-1 на никель-кизельгуровом катализаторе при 300° С и избыточном давлении 10,5 ат приводит к образованию смеси 93% 2,2-диметилбутана и 7% 2,3-диметилбутана. В присутствии катализатора, применявшегося [c.128]

    Две промышленные установки избирательной парофазной гидроочистки работают на заводах фирмы Шелл около 10 лет [1]. При этом процессе, осуществляемом на высокоактивном и легко регенерируемом сульфидном вольфрам-никелевом катализаторе, поддерживают давление в пределах 35— 52,5 ат и температуру 230—370° С в зависимости от характеристик исходного сырья и требуемой глубины очистки. Один из вариантов этого процесса использовался еще во время второй мировой войны для очистки высокоароматических бензинов каталитического крекинга для получения компонентов авиационного бензина, обладающих высокой детонационной стойкостью на богатых смесях. Из-за присутствия большого количества ненасыщенных компонентов и серы бензин характеризовался высоким содержанием смол и низкой детонационной стойкостью при работе на бедных смесях (без добавки ТЭС), но гидрированием его удавалось получать с количественным выходом авиационный бензин, полностью удовлетворяющий требованиям спецификаций. При этом процессе достигались избирательное насыщение алкенов и обессеривание без одновременного гидрирования ароматических компонентов. После окончания второй мировой войны эти установки переключили на производство компонентов автомобильного бензина. Оказалось, что при высокой объемной скорости на применяемом катализаторе избирательно гидрируются сернистые соединения (с образованием сероводорода) без сопутствующих реакций крекинга или полимеризации диены с сопряженными двойными связями насыщаются почти полностью при крайне незначительной степени гидрирования алкенов. Этот вариант процесса приводил к образованию малосернистого продукта с низким содержанием смол, сохраняющего высокое октановое число (по исследовательскому методу) исходной 4>ракции. Вследствие высокого выхода продукта (более 100% объемн.) процесс оказался экономически более выгодным, чем кислотная очистка. [c.154]

    Ббльшая часть суммарной мощности промышленных установок гидрогенизационной очистки используется для предварительной очистки прямогонных бензиновых фракций, подвергаемых затем рпформингу на платиновых катализаторах. Назначение этой очистки заключается в облагораживании низкокачественных дистиллятов для возможности их последующего риформинга без уменьшения срока службы платинового катализатора или Лез снижения его избирательности. При этом процессе происходит -насыщение алкенов и разложение сернистых, азотистых, кислородных и металлорганических примесей, содержащихся в сырье. При одинаковой жесткости риформинга (т. е. при одинаковом октановом числе получаемого продукта) присутствие сернистых соединений вызывает усиление реакций гидрокрекинга, что ведет к снижению выхода риформинг-бензина. Поэтому желательно снизить содержание серы до предельной концентрации, ниже которой падения активности почти незаметно. [c.154]

    В заключение раздела по радиационному алкилированию алканов алкенами необходимо подробнее остановиться на отмечавшейся ранее возможной роли поверхности в таких цепных реакциях, как алкилирование и крекинг. Например, в обширной серии опытов в аппаратуре проточного типа, проводившихся в ядерном реакторе в Брукхейвене, оказалось возможным многократно повторяя опыты в одном и том же реакционном аппарате, [c.136]

    Реакция взаимодействин алкенов с серной кислотой сопровождается побочными процессами - образованием диалкилсульфатов и их полимеризацией- С увеличением концентрации серной кислоты уменьшается доля превращенных в дналкилсульфаты алкенов и увеличивается выход кислых алкилсульфатов. Однако при концентрации кислоты выше 9Ь% увеличивается скорость полимеризации, наблюдается потемнение реакционной массы и выделение диоксида серы. Оптимальное мольное соотношение серной кислоты и алкенов составляет 1,2 (1,5 - 2,0). [c.71]


Смотреть страницы где упоминается термин Алкены серой: [c.276]    [c.85]    [c.199]    [c.61]    [c.393]    [c.89]    [c.267]    [c.382]    [c.445]    [c.593]    [c.344]    [c.79]    [c.129]    [c.155]    [c.143]    [c.870]    [c.879]    [c.1635]    [c.2216]    [c.72]   
Химия тииранов (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены

Алкены с производными серы

Алкены хлоридами серы

Взаимодействие окисей алкенов с соединениями серы

Реакции алкенов с элементной и атомарной серой

Тиираны удаление серы и превращение в алкены



© 2025 chem21.info Реклама на сайте