Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилла распад

    Гемин и хлорофилл. Особенно важными производными пиррола являются пигменты крови и зеленых растений. Красящее вещество крови, гемоглобин, играющий роль передатчика кислорода, является сложным белком. При гидролизе он распадается на протеин—глобин и небелковое вещество—гемин. В мо- [c.588]

    Магний имеет большое биологическое значение, он входит в состав хлорофилла, участвует в процессе фотосинтеза, в образовании или распаде углеводов и жиров, в превращениях фосфорных соединений. Недостаток магния в почве как микроэлемента вызывает заболевания растений (хлороз, мраморность листьев и др.). При низких содержаниях его в кормах наблюдаются заболевания и у сельскохозяйственных животных. Магниевым микроудобрением служит доломитMg Oa- [c.299]


    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    Проблемы синтеза и распада хромопротеинов привлекают внимание как исследователей, так и практических врачей по двум основным причинам. Во-первых, вследствие широкого разнообразия биологически важных функций гемоглобина, хлорофилла и цитохромов, в молекулах которых центральную роль играет ядро порфирина, обладающее способностью координационно связываться с ионами металлов (см. главу 2). Во-вторых, изменения синтеза или распада порфиринов и соответственно их комплексов с белками приводят к нарушению жизненно важных функций и развитию болезней у человека и животных. [c.503]

    Основные научные работы связаны с изучением роли различных классов органических соединений в животных организмах. В сотрудничестве с И. П, Павловым исследовал роль печени в образовании мочевины, химизм этого процесса и вопросы о значении аммиака в нормальном и патологическом состояниях организма. Обнаружил (1875), что озонированный воздух может окислять индол в индиго, однако указанная реакция проходила с малым выходом и не могла иметь препаративного значения. Определил (1876) по плотности пара молекулярную массу индола, что помогло установить его строение. Изучал небелковую часть гемоглобина и его производных. Разрабатывал (с 1884) вопрос о химической структуре красящего вещества крови (гемина) и предложил (1901) его первую структурную формулу. Совместно с Л. П. Т. Мархлевским установил (1897—1901) химическое родство гемоглобина и хлорофилла. Исследовал химический состав некоторых бактерий, а также химизм гнилостного распада белков. Предложил (1897) способ получения [c.356]


    Особое место так называемых ароматических тетрапиррольных соединений - порфиринов (НгП) и их аналогов - среди огромного количества биологически активных веществ обеспечивается их участием в фундаментальных процессах жизнедеятельности, таких как фотосинтез (хлорофиллы и бактериохлорофиллы), перенос молекулярного кислорода (гемы), реакции изомеризации и перенос метильных групп (корриноиды), восстановление сульфита и нитрита (сирогем), образование метана у бактерий (фактор р4зо) и ряд других, а также их биосинтезом и широким распространением в природе. Тетрапирролы с открытой цепью (билины и фикобилины) являются продуктами распада гема в животных организмах. [c.326]

    Гемоглобин (и миоглобин) пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Последний расщепляется далее пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в желудочно-кишечном тракте, которые свойственны простым белкам. Простетическая группа гемоглобина (оксигемоглобина) — гем — окисляется в гематин. Гематин, так же как и хлорофилл, всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в внде различных продуктов, образующихся под влиянием бактерий кишечника. [c.364]

    Источниками железа для синтетических целей являются пищевые продукты, а также железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезенки (около 25 мг в сутки). Простетические группы пищевых хромопротеинов (гемоглобин, миоглобин), включая хло-рофиллпротеины, не используются для синтеза железопротеинов организма, поскольку после переваривания небелковый компонент гем подвергается окислению в гематин, который, как и хлорофилл, не всасывается в кишечнике. Обычно эти пигменты выделяются с содержимым толстой кишки в неизмененной форме или в виде продуктов распада под действием ферментов кишечных бактерий. Следовательно, гемсодержащие соединения пищи не используются в качестве источника порфиринового ядра, а синтез сложного пиррольного комплекса в организме протекает из низкомолекулярных предшественников de novo. [c.504]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    У большинства деревьев осенью листья изменяют свою окраску с зеленой на желтую, красную или коричневую и опадают с ветвей. Этот процесс включает распад хлоропластов и разрушение хлорофилла. Подробно механизм разрушения хлорофилла пока не изучен. Известно лишь, что на ранних стадиях его распада теряются фитол и атом магния, в результате чего образуется феофорбид (10.22). Порфириновая система колец затем расщепляется с образованием бесцветных соединений, имеющих сравнительно небольшую молекулярную массу. [c.365]

    Поскольку при переходе в возбужденные состояния (синглетные и триплетные) энергия молекул повышается, последние приобретают химические свойства, которых не было у невозбужденных молекул [67, 67а]. Изменения значений рА а функциональных групп при переходе в возбужденное состояние могут приводить к диссоциации протонов или к их присоединению. Диссоциация на ионы или радикалы иногда сопровождается разрывом связей. Могут протекать реакции фотоприсоединения и фотоотш,епления, а также изомеризация молекул, играюш,ая важную роль в функционировании зрительных рецепторов. Возбужденные молекулы могут стать сильными окислительными агентами, способными принимать атомы водорода или электроны от других молекул. Примером такого рода служит фотоокисление ЭДТА рибофлавином (подвергающимся фотовосстановлению, как показано на рис. 8-15). Более важным с точки зрения биологии процессом является фотосинтез, в ходе которого возбужденные молекулы хлорофилла осуществляют фотовосстановление других молекул, временно оказываясь при этом в окисленном состоянии. К сожалению, ценность исследования фотохимических реакций сильно снижается возможностью протекания множества параллельных реакций, зачастую приводящих к образованию огромного количества разных фотохимических продуктов (достаточно взглянуть на тонкослойную хроматограмму продуктов распада рибофлавина, рис. 2-34). [c.33]


    Главным толчком к исследованию химии пирролов послужили работы, посвященные изучению строения пигмента крови — геми-на, а также хлорофилла, пигмента зеленых частей растений, обеспечивающего процессы фотосинтеза. Было обнаружено, что в результате глубокого распада этих двух сложных пигментов образуется смесь алкилпирролов. И действительно, в живой клетке эти пигменты синтезируются из порфобилиногена, единственного ароматического пиррола, участвующего в процессе основного метаболизма и выполняющего в нем жизненно важные функции. [c.215]

    Это наследственное (аутосомное рецессивное) нарушение метаболизма липидов приводит к накоплению в тканях 20-углеродной жирной кислоты с разветвленной цепью — фи-тановой кислоты. Обычно фитановая кислота образуется в организме из растительного спирта фитола, который входит в состав хлорофилла, образуя сложный эфир (рис. 13-19). Поскольку р-окисление фитановой кислоты заблокировано, первой стадией ее распада является а-окисление, после чего в результате р-окисления образуются (из одной исходной молекулы) три молекулы пропионил-СоА, три молекулы аце-тил-СоА и одна молекула изобутирил-СоА. [c.313]

    Таким образом, было окончательно установлено, что просте-тические группы хромопротеидов пищи, в том числе и хлорофилла не используются в организме животного для образования гемоглобина. Гем, освобожденный из гемоглобина после распада эритроцитов, также не используется для ресинтеза ге- [c.190]

    Наблюдаются ли аналогичные изменения в концентрации хлорофилла у высших растений—спорный вопрос. Вильштеттер и Штоль [8] обнаружили в часто цитируемом эксперименте, что концентрация хлорофилла и отношение [а] [6] остаются неизменными после экспозиции листьев на интенсивном свету в течение нескольких часов (см. табл. 78). Главным образом на основании этого эксперимента обычно считается, что пигментная система высших растений остается неизменной, кроме периодов быстрого роста весной и распада при листопаде. [c.422]

    Высокое содержание хлорофилла обусловливает высокую жизнеспособность злаковых культур (засухо-, хо-лодо- и солеустойчивость). Между содержанием хлорофилла и отношением растений к магнию существует связь. Растения древних по происхождению семейств при выращивании их на почве, бедной магнием, страдали больше (появление хлороза), чем культурные растения. Исключением из этого правила были растения семейств пасленовых и тыквенных, которые также сильно страдали от недостатка магния [Ш]. При созревании растений магний хлорофилла распадается и переходит в другие формы [37]. [c.11]

    Далее молекула хлорофилла, присоединяя атом водорода, восстанавливается. Радикалы ОН, соединяясь попарно, образуют молекулу пероксида водорода Н2О2, которая как непрочное соединение распадается на воду и кислород  [c.177]

    Магнитные методы обнаружения свободных радикалов. Методом электронной спектроскопии нельзя получить прямых доказательств существования свободных радикалов. Однако благодаря свойству парамагнетизма свободных радикалов их можно обнаружить путем определения магнитной восприимчивости и с помощью еще более эффективного метода электронного парамагнитного резонанса. Измерения ЭПР позволяют не только установить присутствие свободных радикалов в системах, для которых могут быть получены электронные спектры поглощения, но и в таких системах, электронные спектры которых трудно интерпретировать (например, сидно-ны) или даже зарегистрировать (например, алифатические свободные радикалы). Проведенное исследование кристаллического хлорофилла и этил-хлорофиллида также продемонстрировало эффективность применения ЭПР в фотохимии твердого состояния органических веществ [81. Этим методом удалось показать, что для активации дублетного состояния (т. е. радикального состояния, в котором спины неспаренных электронов нескоррелиро-ваны) требуется вода или такой акцептор электронов, как хинон, и что удаление воды приводит к ускорению распада этого состояния. [c.299]

    У белых крыс, поедавших белки, извлеченные из люцерны, описаны явления фотосенсибилизации (повышенной светочувствительности) и дерматозов [71], Подобный тип поражения наблюдался у свиней, получавших белки из люцерны [13]. Эти реакции обусловлены присутствием продуктов распада пигментов, относящихся к классу хлорофиллов, феофорбида и фил-лоэритрина, — соединений, всасываемых в процессе пищеварения. [c.350]

    У растений. У водорослей, так же как и у животных, окислительный разрыв порфиринового кольца происходит практически только по углероду а-метинового мостика, который теряется в виде окиси углерода. Источником билинов у водорослей является, скорее всего, гем, а не хлорофилл, и механизм его распада, вероятно, сходен с механизмом распада у животных. Детали заключительных стадий распада, в результате которого образуются фикобилины с характерной структурой, пока не ясны. Для образования билипротеинов у водорослей и [c.211]

    В ряде работ показано, что синтез и распад (turnover) хлорофиллов и каротиноидных пигментов продолжается и в зрелых, функционирующих хлоропластах, однако для более детальной характеристики этих процессов необходимы дальнейшие исследования. [c.361]

    Хлорофиллы содержат порфиновое кольцо, аналогичное в общих чертах кольцу красителя крови. Этот давно известный факт был установлен, между прочим, в результате применения восстановительных и окислительных методов распада, приводящих к получению тех же гемопирролов, гемопирролкарбоновых кислот, метилэтилмалеинимида и гематиновой кислоты, как и в случае красителя крови. Боковые цепи в хлорофиллах такие же (в отношении числа атомов углерода), как и в геме, и распопожзны в том же порядке, как и в этиопорфирине III. Эго (наряду с многим другим) служит доказательством в пользу единого происхождения жизни на земле. [c.631]

    В. В. Вильямс указывает на генетическую связь и общее происхождение таких веществ, как эфирные масла, смолистые вещества, каучук, каротиноиды, жирорастворимые витамины (А, О, Е и К), сапогенины и фитостеролы. В основе их строения лежит изопрен, который образуется при распаде молекулы хлорофилла. Формирование этих веществ из изопрена опреде- [c.195]

    Поддержание жизни обусловлено химическими процессами двух типов 1) фотохимическим превращением солнечной энергии в электрохимическую, необходимую для ассимиляции двуокиси углерода и воды с образованием восстановленных органических веществ и кислорода, и 2) процессом, обратным первому, т. е. окислением органических веществ с образованием двуокиси углерода и воды и с освобождением энергии. Ионы металлов участвуют в процессах обоих этих типов. Энергия солнечного излучения усваивается биосферой при участии магнийпорфириновых комплексов — хлорофиллов. Затем может происходить перенос электрона через ряд промежуточных переносчиков, таких, как цитохромы (Ре +/Ре +), ферредоксин (Ре Ре +) и пластоцианин (Си+/Си ) молекулярный кислород образуется при участии комплекса марганца. В процессах типа 2 участвуют ферменты, которые регулируют биосинтез и распад органических веществ. Поскольку биологические системы термодинамически неустойчивы, регулируемое освобождение энергии, происходящее во многих случаях при участии металло-ферментов, является основным условием существования жизни. [c.7]

    Среди изомерных алканов особое место занимают алканы изопреноидной струкгуры. В нефти они впервые были обнаружены в 1969 г. С тех пор они обнаружены во всех горючих ископаемых и являются основным типом структур алканов, наряду с алканами нормального строения. Отличительным признаком этих углеводородов является насыщенная структура полиизопрена, т. е. наличие метильного разветвления у каждого пятого атома углеродной цепи. Изопреноиды являются реликтовыми углеводородами, перешедшими в нефть из растительного материала, где они достаточно широко распространены. Примером может служить спирт фитол, входящий в состав молекулы хлорофилла. При его распаде может образовываться целая гамма изопреноидов. [c.682]

    Хемилюминесценция в реакциях катализированного распада перекисных соединений исследовалась более подробно. Свечение наблюдалось только при использовании хорошо люминесцирующих катализаторов. Кроме уже упоминавшихся, в качестве катализаторов использовались хлорофилл, комплексы магния, цинка и кадмия с тетрафенил порфирином, мезопорфин свинца и др. Было установлено, что спектр свечения совпадает со спектром флуоресценции катализатора, а его интенсивность зависит от природы катализатора, перекисного соединения и растворителя 16—9]. Визуальные наблюдения показали, что цвет свечения при барботировании воздуха совпадает с цветом свечения [c.172]

    Фитол С20Н40О. Омылением хлорофилла, зеленого красящего вещества листьев растений, Вилльштеттер получил в числе важнейших продуктов его распада ненасыщенный первичный спирт с разветвленной углеродной цепью, названный им фитолом. При окислении фитола озоном или хромовой кислотой получается гликолевый альдегид HjOH—СНО и насыщенный кетон igHggO. для которого установлено следующее строение, подтвержденное синтезом  [c.458]

    Главным источником образования этих углеводородов является фитол, входящий в состав хлорофилла (рис. 31). Термическая или термокаталитическая деструкция фитола в процессе превращения исходной биомассы в нефть является реакцией, приводящей к возникновению изопреноидных соединений (М. И. Красавченко и др., 1969). В силу особенностей строения фитола (рис. 32) при его распаде возникновение 2,6-диметилдекана и 2,6,10-три-метилтетрадекана представляется маловероятным, поэтому содер- [c.188]

    Один из первых исследователей спектров поглощения хлорофилла и его производных, К- А. Тимирязев, также обратил внимание на сходство основных пигментов живого мира —хлорофилла и гемоглобина. Исследуя в 1870 г. в Парижской лаборатории Бертло химические свойства и спектры продуктов распада этих пигментов, он заметил большое сходство между ними Не могу не указать здесь,— писал тогда Тимирязев в отчете об этой работе,— на аналогию как во взаимных превращениях, так в отношении спектров между хлорофиллином (т. е. хлорофиллом в терминологии Тимирязева.— Е. С.) и его производ- [c.166]

    В атмосферном воздухе угле 1од содержится в значительных концентрациях (в среднем 0,03. об. % ) в форме двуокиси угл ода СОг, которая поглощается зелеными растениями. Последние обладают способностью при помощи содержащегося в них красящего вещества — хлорофилла образовывать из двуокиси углерода и воды с отщеплением кислорода углеводы (GgHmOj) , например крахмал и целлюлозу. Необходимая для этого энергия доставляется солнечным светом. Углеводы и продукты их превращения затем вновь распадаются в растительных и животных организмах (последние получают их из растений) на двуокись углерода и воду в результате процесса дыхания, сопровождающегося выделением энергии. Таким образом, двуокись углерода совершает непрерывный кругооборот между атмосферой и органическим миром. [c.455]

    В нормальных условиях процессы синтеза преобладают над процессами распада. Идет накопление органического вещества. Однако при действии ядов, как видно из табл. 2 и 3, изменяется содержание хлорофилла, происходит изменение дыхания, а накопление органического вещества падает. В этих условйях дыхание становится малопродуктивным. [c.13]


Смотреть страницы где упоминается термин Хлорофилла распад: [c.102]    [c.978]    [c.131]    [c.68]    [c.75]    [c.315]    [c.331]    [c.167]    [c.409]    [c.124]    [c.7]    [c.99]    [c.31]    [c.132]    [c.175]    [c.304]    [c.353]   
Генная инженерия растений Лабораторное руководство (1991) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл хлорофилл



© 2024 chem21.info Реклама на сайте