Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

применение для анализа ферментов

    Наиболее часто необходимость в автоматизации ощущается в области биомедицины [20—22]. Современную клиническую лабораторию можно оборудовать автоматическими приборами для анализа ферментов [23—26], для приготовления срезов для микроскопии и даже для проведения сложных анализов крови [27]. Имеется много примеров применения автоматических методов в области фармацевтики [28—29]. Несмотря на то что ни один из упомянутых выше элегантных приборов не применяли для анализа функциональных групп, многие реализованные в них идеи можно использовать для этой цели. [c.377]


    Классическими методами анализа, например метилированием, показано, что гликоген состоит из а-(1- 4)-связанных остатков О-глюкозы, и имеет а-(1,4,6)-связанные точки ветвления. Применение амилолитических ферментов для определения тонкой структуры гликогена показало, что он имеет ветвистое строение (см. рис. 26.3.5, й), причем каждая цепь состоит из 12 остатков D-глю-козы. Столь малая длина цепей в соединении, имеющем молекулярную массу порядка 10 —10 , свидетельствует о высокоразветвленной структуре, вследствие чего молекула гликогена поглощает Иод в еще меньшем количестве, чем молекула амилопектина. Области густого ветвления, устойчивые к действию а-амилазы, распределены по молекуле статистически [160]. С доступностью паракристаллического гликогена стало возможным применение физических методов для более детального изучения его строения 161]. Нахождению в природе, выделению, строению и ферментативному расщеплению гликогена посвящены обзоры [162—164]. [c.257]

    Анализ областей применения иммобилизованных ферментов в медицине и фармацевтической промышленности позволяет выделить несколько направлений, а именно  [c.168]

    Иммуноферментные методы анализа имеют высокую чувствительность за счет использования не радиоактивности, а ферментов. Специфичность также обусловлена применением антител. Фермент используется для образования соединения, которое можно определить в очень малых количествах, используя, например, [c.316]

    Идентификация аминокислотных остатков, входящих в активный центр того или иного фермента, осуществляется различными методами. Так, применение ингибиторного анализа дает возможность выявить функциональные группы, отвечающие за проявление ферментативной активности. Локализация активного центра возможна также при применении протеолитических ферментов, гидролизующих молекулу фермента на отдельные фрагменты. [c.65]

    Мы считаем целесообразным развивать работу, мобилизуя усилия на дифференциацию программы гигиенического исследования товаров бытовой химии и сырья для их производства в зависимости от назначения и частоты применения препаратов населением (повседневно, периодически и эпизодически). Максимальное внимание и в дальнейшем будет уделяться изучению СМС, выяснению механизма действия ПАВ и СМС на их основе с использованием достижений молекулярной биологии, современных химических, гистохимических (анализ ферментов), физиологических (электроэнцефалография) и других методов. [c.139]

    Разработаны ферментативные методы, пригодные для анализа образцов биологического происхождения. Для определения оксалатов в плазме крови применен специфический фермент оксалат-декарбоксилаза. Щавелевая кислота декарбоксилируется ферментом с образованием СО2  [c.156]


    Применение иммобилизованных ферментов для химического анализа [c.16]

    Благодаря своей высокой специфичности ферменты давно применяются в области аналитической химии. Применение иммобилизованных ферментов способствует созданию методов без-реагентного анализа, позволяющих проводить практически непрерывный анализ водных растворов органических (а в ряде случаев и неорганических) соединений. В свою очередь достижения в этой области стимулируют развитие эффективных методов контроля окружающей среды, клинической диагностики и т. д. Созданные в недавнее время так называемые ферментные электроды применяются в быстром автоматическом анализе многокомпонентных систем. Наконец, разработаны чувствительные ферментативные методы с использованием термисторов, в том числе, и с ферментными термисторами . [c.16]

    Применение иммобилизованных ферментов, позволяющих проводить массовые химические анализы в отдельных пробах или в потоке (с многократным использованием одного и того же препарата фермента), в значительной степени снимает проблему высокой стоимости ферментных методов анализа и зачастую повышает точность аналитического метода. Существуют два общих подхода к аналитическому определению концентрации реагентов (субстратов) в исследуемой системе. В одном из них ферментативную реакцию доводят до полного израсходования определяемого вещества (или до установления в системе равновесия между исходными реагентами и продуктами реакции), регистрируя при этом изменение какого-либо подходящего физического или химического свойства системы, и по количеству образовавшегося продукта рассчитывают количество субстрата в исходном образце. Во втором подходе используют кинетические методы анализа для определения скорости появления продукта или исчезновения субстрата в ферментативной реакции и вычисление исходной концентрации субстрата по соответствующей калибровочной кривой. Этот метод применим также для определения концентрации эффекторов (ингибиторов или активаторов), присутствующих в реакционной системе. Оба данных подхода были реализованы на практике с применением иммобилизованных ферментов. [c.16]

    Химия белков и энзимология. Роль иммунохимических исследований в изучении строения и функции белков со всей очевидностью вытекает из результатов работ по анализу антигенной структуры белков, структурно-функциональному изучению антител. Эти вопросы широко освещались в предшествующих главах. Здесь представляется целесообразным привести несколько примеров применения антител для анализа ферментов. [c.267]

    Рассматривается проблема получения белка, этанола, органических кислот, метана и других ценных продуктов на основе микробной трансформации лигноцеллюлозных и целлюлозных отходов сельского хозяйства и промышленности. Приведены данные о составе и свойствах целлюлозы и ряда природных лигноцеллюлозных материалов, способы их предварительной модификации с целью повышения эффективности биоконверсии этих материалов. Рассматриваются механизмы ферментативного расщепления целлюлозы и родственных полисахаридов, а также вопросы биосинтеза и некоторые аспекты применения целлюлолитических ферментов. На основании обобщения и анализа использованных в работе данных делаются выводы о возможности практической реализации процессов биоконверсии. [c.2]

    Судя по всему, при анализе или интерпретации поведения субстрата в терминах алмазно-кристаллической решетки следует обращаться к жестким молекулярным моделям. Есть надежда, что применение таких моделей для изучения реакций, протекающих в присутствии других ферментов и коферментов, привлечет еще большее внимание химиков к использованию ферментов на трудных стадиях слол ного органического синтеза. [c.411]

    При анализе механизмов ферментативных реакций наибольшее применение нашел метод температурного скачка. Это объясняется тем, что разработана достаточно простая и надежная аппаратура, позволяющая осуществить изменение температуры за несколько микросекунд, а также тем, что данный метод позволяет работать с небольшим объемом исследуемого раствора (до 0,1 мл), что весьма важно при исследовании реакций с ферментами. Метод температурного скачка использует чувствительную спектрофотометрическую аппаратуру и, следовательно, можно регистрировать весьма незначительные концентрации промежуточных соединений [39, 41, 42]. Принципиальная схема установки температурный скачок приведена на рис. 71. Обычно температурный скачок осуществляется за счет разряда высоковольтного конденсатора через раствор электролита в реакционной ячейке. [c.213]

    Во второй части книги, посвященной ферментам, рассматриваются как традиционные вопросы биокинетики (уравнение Миха-элиса — Ментен, различные виды ингибирования, влияние pH на скорость ферментативных реакций и т, д.), так и новые, не нашедшие пока отражения в учебной литературе (новые методы нахождения элементарных констант из данных стационарной кинетики, влияние диффузии на кинетику действия иммобилизованных ферментов, использование интегральных форм кинетических уравнений, кинетический анализ систем со взаимным истощением, анализ нетривиальных типов ингибирования, применение теории графов в ферментативной кинетике и др.). Требования систематизации курса способствовали созданию новых методов обработки кинетических данных ферментативных реакций, описываемых в главах 5—8, 10, 11. [c.4]


    Значит, нужно сделать еще что-то. Тут два пути. Можно выделить моносахарид (или его производное) в индивидуальном состоянии и определить его удельное вращение. А можно воспользоваться ферментом, катализирующим ту или иную реакцию этого моносахарида — уж ферменты-то отличают правое от левого Но ферменты — реагенты тонкие и капризные. Надежный анализ с помощью ферментативной реакции требует проверки с применением образцов заведомых моносахаридов, вводимых в ту же реакцию с тем же самым препаратом фермента. И вот тогда только у исследователя появляется действительная уверенность в том, что вещество — моносахарид — идентифицировано. [c.59]

    Биосенсоры на основе иммобилизованных ферментов помогают вьшолнять десятки быстрых и точных анализов при диагностике заболеваний, контролировать содержание вредных веществ (инсектицидов, пестицидов, удобрений) в пищевых продуктах и в воздухе. Биосенсоры нашли применение в решении аналитических задач в химической и микробиологической промышленности, а также в научных исследованиях. [c.102]

    Взаимодействию фермента с субстратом предшествует сближение и ориентация субстрата по отношению к активному центру фермента. Затем образуются фермент-субстратные комплексы, реальное существование которых может быть зафиксировано различными способами. Наиболее наглядным и эффективным является метод рентгеноструктурного анализа. В качестве примера можно привести идентификацию фермент-субстратного комплекса карбоксипептидазы А и ее субстрата глицил-ь-тирозина. Метод дает возможность не только установить сам факт образования комплекса, но и определить типы связей. Более простым, но достаточно эффективным методом является спектральный анализ фермента и соответствующего фермент-субстратного комплекса. Таким образом, бьши, в частности, идентифицированы фермент-суб-стратные комплексы для ряда флавиновых ферментов. В последние годы широкое распространение получило применение синтетических субстратов, благодаря которым можно моделировать ряд стадий ферментативного процесса, в том числе и связанных с образованием фермент-субстратного комплекса. [c.69]

    Такое параллельное развитие существенно способствовало созданию новой отрасли технологии — ферментной инженерии. Согласно Виньяру [48], последняя включает производство, выделение, очистку, иммобилизацию и использование ферментов в различного типа реакторах. Практическое использование ферментов стало возможным благодаря новейшим достижениям энзимологии, а именно после выяснения структур и механизмов действия ряда ферментов, имеются большие возможности для практического применения иммобилизованных ферментов в анализе, медицине и промышленности. Упрощение процесса выделения ферментов с помощью аффинной хроматографии, по-видимому, может привести к получению недорогих ферментов в требуемых количествах. [c.11]

    В настояш,ее время ингибиторный анализ ферментов является не только методом качественной идентификации функциональных групп, имеющ,их отношение к каталитической активности. Он находит все большее применение для количественной оценки реак-ционноспособности, выяснения особенностей строения активных центров. Появление в последние годы полифункциональных ингибиторов позволяет выявить взаимное расположение функциональных групп в активных центрах, т. е. подойти к расшифровке уникальной мозаики трехмерного строения ферментов, определяющей их субстратную специфичность. [c.79]

    Недавно Гюильбо и Стокбро [469] предложили новый способ применения иммобилизованных ферментов. Фермент размещают на поверхности магнитной мешалки, которая тем самым выполняет сразу две функции перемешивает раствор и катализирует химическую реакцию. Такая мешалка достаточно экономична и стабильна, с ее помощью можно выполнить несколько сотен анализов, которые проводятся в течение короткого времени, достаточно воспроизводимо и точно. В качестве иммобилизованного фермента была использована уреаза метод применялся для анализа содержания мочевины в крови. Выделившийся при pH 8,5 аммиак определялся на электроде с воздушным зазором. Калий, натрий, аммоний, а также другие пеорганические [c.162]

    Принципы и техника электрофореза не требуют специального описания [14—16]. Обнаружение одиночного пика при двух или трех достаточно далеких значениях pH является признаком гомогенности. Применение для этой цели интерференционной онтики менее удовлетворительно, несмотря на ее высокую чувствительность, поскольку полученная кривая требует дифференцирования. Электрофоретическая подвижность зависит как от заряда молекулы, так и от гидродинамического сопротивления, причем оба эти фактора независимы. Они могут компенсироваться, давая в результате одинаковую подвижность для двух физически совершенно различных молекул, по это не может происходить при различных значениях pH. Поэтому важно проверить устойчивость гликопротеина в изучаемом интервале pH многие гликонротеины неустойчивы, особенно при высоких pH [17—19]. Полезная дополнительная информация может быть получена, если гликопротеин содержит заметные количества концевой сиаловой кислоты. В таких случаях заряд молекулы онределяется главным образом этим компонентом, и в большинстве случаев сиаловую кислоту можно почти полностью удалить с помош ью нейраминидазы. Если используемое количество фермента таково, что его можно обнаружить при последуюш,ем электрофоретическом анализе, фермент лучше сначала удалить, если это можно сделать удобным способом. Часто для этого пригодна гель-фильтрация. Молекулярный вес нейраминидазы холерного вибриона составляет около 9 -10 (Лэйвер [20]). Если после обработки нейраминидазой наблюдается два или более электрофоретически различных компонента вместо одного, наблюдавшегося перед обработкой, это значит, что материал, несмотря на его электрофоретическую гомогенность, содержит молекулы, различающиеся по химической природе остатков, от которых зависит заряд молекулы. Эта процедура может повысить степень полидисперсности, если реакция пе доведена до конца, но она не будет превращать гомогенные препараты в гетерогенные. Очевидно, важно убедиться, что используемая нейраминидаза не обладает никакой иной ферментативной активностью, особенно протеолитической. Описаны методы получения нейраминидазы необходимой чистоты [21, 22]. Проверке по этому способу был подвергнут а1-кислый гликопротеин человека [23], после обработки нейраминидазой наблюдалось два электрофоретических ника, несмотря на кажущуюся гомогенность необработанного материала в широком интервале рЬ1. [c.45]

    Необходимо отметить, что отсутствие углеводного компонента [а молекуле фермента-метки не является непреодолимым препятст- ием для применения этого фермента в анализе на основе лектина. ак, авторами метода была показана возможность использования -0-галактозидазы, у которой отсутствует углеводный компонент, [редварительно ковалентно связанной через глутаровый альдегид глюкозооксидазой, способной взаимодействовать с лектином. Та-сой подход, конечно, приводит к усложнению анализа, но вместе с ем позволяет использовать ферменты, обладающие высокой ката-[итической активностью, что повышает чувствительность опреде-1ения. [c.108]

    Требования к аналитическим системам, поступающим в продажу, постоянно возрастают. Безусловно, флуоресцентные методы ИФА могут им удовлетворить. Новые методы должны быть скоростными, универсальными и простыми при низкой стоимости. Достижению этих целей может способствовать автоматизация. Предстоит еще изучить применение различных ферментов и флуорофоров, средств автоматизации и схем анализа. Метод, описанный в этой главе, представляет собой шаг в этом направлении. Разработанный нами бесконкурентный метод связан с использованием меченых антител и новой пары краситель— фермент. Время анализа составляет 60 с, стоимость реагентов для одного определения — меньше восьми центов. Анализ основан на одноточечном измерении и выполняется автоматически с помощью проточно-инжекционной системы. [c.169]

    Ферменты и ферментативные системы находят применение в сое менной аналитической химии. Хотя их широкое использование сдержи ется рядом факторов малой доступностью высокоочищенных препара неустойчивостью ферментов при хранении и различных воздействиях, возможностью их многократного использования из-за сложной процед выделения после окончания анализа. Применение иммобилизован ферментов позволяет преодолеть эти недостатки и значительно сни стоимость анализов. Иммобилизация ферментов дает возможность увс чить стабильность препаратов при длительном хранении, повышает уст чивость к внешним воздействиям, что позволяет использовать иммобр зованные ферменты в экспедиционных условиях [218]. [c.122]

    Проблемы и перспективы применения ферментов в анализе объектов окружающей среды рассмотрены в ряде обзоров [83-85 и монофафий 4,86) В принципе использование ферментативных реакций является частным случаем кинетических методов анализа, основанных на измерении скорости индикаторной каталитической реакции в присутствии различных количеств определяемых веществ Для правитьного применения 2ХХ [c.288]

    Для определения концентрации веществ в большинстве иммунохимических методов к анализируемому раствору, содержащему определяемое соединение и его меченый аналог, добавляют реагент в количестве, намного меньшем необходимого по уравнению (7.12). Как немеченые, так и меченые соединения взаимодействуют с реагентом практически одана-ково, поэтому отношение их концентраций будет одним и тем же в растворе и в связанном состоянии. При этом возможность применения метода во многом определяется доступностью меченого антигена и соответствующих антител. Для введения метки используют различные реагенты радионуклиды, ферменты, красящие вещества, флуоресцентные и хеми-люминесцентные зонды, ионы металлов. До последнего времени в качестве маркеров антител применяли радиоактивные изотопы этот метод назьшается радиоиммунохимическим анализом (РИА). При этом степень [c.298]

    Выражение для скорости реакции (13.1) имеет вид дробно-рационального выражения, числитель которого содержит 8 слагаемых, а знаменатель — 32 слагаемых. Обработка подобной системы (кстати, далеко не самой сложной для реакций, катализируемых ферментами) по методу стационарных концентраций— довольно трудная задача. Значительное упрощение таких схем может быть достигнуто с помощью теории графов, применение которой к анализу кинетики ферментативных реакций было разработано главным образом в работах М. В. Волькенштейна [1—8], а также в работах Кинга и Альтмана [9—10], Фромма [11], Орси [12], Келети [13]. [c.285]

    В курсе приведены многочисленные примеры практического применения главным образом газовой и молекулярной жидкостной хроматографии на адсорбци-онно или химически модифицированных адсорбентах для анализа углеводородов, их производных и гетероциклических соединений. Особое внимание уделено анализу вредных примесей, разделению углеводов, стероидов, гликозидов, азолов, азинов, а также таких важных галогенпроизводных, как фреоны и пестициды. Адсорбция микотоксинов, представляющих собой одну из серьезнейших пищевых и кормовых проблем, рассматривается как в аспекте хроматографического их анализа, так и в аспекте хроматоскопического исслв1Дования структуры их молекул. В конце курса приведены примеры адсорбции и хроматографии синтетических и природных макромолекул. Здесь рассматривается иммобилизация некоторых ферментов и клеток (например, для осахарнвания крахмала, изомеризации глюкозы, для решения проблем искусственной почки), а также вопросы хроматографической очистки вирусов, в частности, вирусов гриппа и ящура. [c.4]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    Недавние исследования динамики молекулы лизоцима с помощью кристаллографических методов показали [55, 56], что атомные смещения в белке наиболее выражены в области активного центра фермента. Хотя эти исследования иока носят лишь постановочный характер, не исключено, что в будущем применение рентгеноструктурного анализа именно для изучения динамических свойств молекул белка (определение средних амплитуд смещения каждого атома от его усреднеппой позиции в кристалле), помимо зарекомендовавших себя исследований статических свойств белковых молекул в кристалле (оиределение усредненных координат всех атомов в молекуле на основе соответствующего распределения электронных плотностей), может дать важную и принципиально новую информацию о структуре ферментов н механизмах их действия. Далее, обещающими являются новые возможности прямого рентгеиоструктурного анализа промежуточных состояний в ферментативном катализе путем охлаждения кристаллов фер-мент-субстратного комплекса в подходящих водноорганических растворителях и определепия структуры образующихся молекулярных комплексов непосредственно в ходе реакции [57, 58]. Этот [c.158]

    Особое распространение получили методы, основанные на использовании антигенов и антител, меченных ферментами, — так называемый иммунофермеитный анализ. Они используются для изучения широкого круга соединений — антител, пептидных и стероидных гормонов, вирусных и бактериальных антигенов, различных белков и ферментов. Существуют гетерогенные (твердофазные) и гомогенные методы иммуноферментного анализа, принципиально различающиеся способом разделения компонентов иммунохимической реакции. Твердофазные методы основаны на применении антител или антигенов, иммобилизованных на нерастворимых носителях. [c.306]

    Разиовцдности Ф.м. а. Среди наиб, чувствительных Ф.м.а. особое место занимают библюминесцентные методы (см. Люминесцентный анализ). Чаще других используют процессы, катализируемые ферментом люциферазой светляков. Система включает люциферин (ф-ла I, люциферин светляка), к-рый в присут. АТФ подвергается катализируемому люциферазой окислению кислородом с образованием люминесцирующего в-ва. Высокий квантовый выход биолюминесценции, применение полиферментных сопряженных р-ций позволяет определять нек-рые соед. при концентрации 0,001-0,1 пМ. [c.79]

    Основная проблема при конструировании и применении ферментных биосенсоров - увеличение продолжительности их действия. Дело в том, что природный (нативный) фермент сохраняет свои свойства лишь в течение относительно короткого времени. Поэтому его закрепляют на поверхности электрода с помощью специальных реагентов, вводят в пленку пористого полимера или гель, либо ковалентно пришивают к подложке. При этом фермент перестает быть подвижным, не вымывается из биослоя, а его каталитическое действие сохраняется. В последнее время для создания биосенсоров используют планарную технологию (фотолитографию, полупроводниковую технику и др.), по которой можно изготовить так называемый биочип, объединяющий сенсорную часть, трансдьюсер, аналого-цифровой преобразователь и микропроцессор для измерения аналитического сигнала и расчета результатов анализа. [c.500]


Смотреть страницы где упоминается термин применение для анализа ферментов: [c.79]    [c.511]    [c.608]    [c.608]    [c.7]    [c.344]    [c.240]    [c.496]    [c.248]    [c.288]    [c.452]    [c.318]    [c.84]   
Молекулярная иммунология (1985) -- [ c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ применение



© 2025 chem21.info Реклама на сайте