Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изучение свойств антител

    III. ИЗУЧЕНИЕ СВОЙСТВ АНТИТЕЛ [c.320]

    В иммуноферментном анализе используются поли- и моноклональные антитела как по отдельности, так и вместе. Относительная легкость получения поликлональных антител из антисывороток иммунизированных животных в ряде случаев дает возможность пренебречь их гетерогенностью. Однако разработка метода получения моноклональных антител — продуктов гибридных клеток — дала им огромные преимущества в иммунохимическом анализе в связи с уникальными свойствами, выгодно отличающими их от антисывороток. Использование моноклональных антител в иммуноферментном анализе дает возможность работать с практически неограниченным источником антител, однородных по молекулярным и иммунологическим свойствам. С их появлением открылись новые возможности для структурного изучения антигенов. Это связано с тем, что моноклональные антитела, продуцируемые гибридомами, связываются со специфическим участком на поверхности белковой молекулы — антигенной детерминантой и могут быть использованы в качестве селективных зондов на определенные структурные участки. [c.306]


    В разделе изложены методы иммунизации животных и гибридизации клеток для получения поликлональных и моноклональных антител, методы получения препаративных количеств антител и их очистки, способы введения ферментных меток в антитела и антигены для использования в иммуноферментном анализе, способы введения радио-изотопных меток в антитела для радиоиммунного анализа, методы изучения антигенных свойств ферментов [c.307]

    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]

    С 1960-х годов и особенно в 80-е годы для проведений фундаментальных исследований по растительным белкам вер больше используются специфические антитела. Иммунохимические методы использовались при изучении белков с различными функциональными свойствами, таких, как ферменты, изо-ферментные компоненты, ингибиторы протеаз, лектины, запасные белки. Эти методы применялись при решении задач идентификации белков, определения их содержания, очистки, локализации в тканях, клетках и клеточных структурах, а также энзиматической регуляции. Они использовались в исследованиях по физиологии, патологии, биохимии, генетике и молекулярной биологии растений. Очень многие работы в этой области нашли отражение во множестве обзорных статей [12, 21—23, 26, 29, 35, 50, 57, 79, 83, 96]. [c.112]


    Однако по мере изучения природы белков и биологической роли каждого из них классификация сильно изменялась и стала основываться на свойствах, которые связаны с их большим функциональным разнообразием и распространенностью. Белки организма в целом представлены широким спектром веществ на долю белков, входящих в состав клеток, обычно приходится более половины сухой массы. Можно выделить некоторые отдельные группы ферменты, которые обеспечивают катализ биохимических реакций в клетке резервные белки структурные белки транспортные белки мышечные белки антитела токсины гормоны и регуляторные белки. Возможно также несколько более широкое понимание биологических функций белков для того, чтобы их классифицировать на три основные категории (табл. 23.1.2)—резервные белки, структурные, или механические белки и белки, проявляющие свои различные биологические свойства при комбинации или связывании с ионами или другими молекулами. [c.221]

    Несомненно, что и биологические функции, и механические свойства полисахаридов и углеводсодержащих биополимеров в большой мере определяются конформацией макромолекулы и распределением в ней реакционноспособных групп. Все эти факторы зависят, в конечном счете, от первичной структуры полимера. Поэтому понимание факторов, определяющих специфичность биологической функции углеводсодержащих соединений и технические свойства полисахаридов, зависит в первую очередь от развития теоретических представлений о связи между строением, конформацией, реакционной способностью и физико-химическими свойствами полисахаридов и смешанных биополимеров, содержащих олиго- и полисахаридные цепи. Установление этих связей является предпосылкой для осуществления направленного синтеза соответствующих физиологически активных веществ и направленной модификации полисахаридов для получения материалов с заранее заданными свойствами. Поэтому исключительно важной задачей является разработка надежных методов установления первичной структуры полисахаридных цепей, требующих минимальной затраты времени и минимального количества материала. Не менее важны эффективные подходы к точной характеристике конформаций полисахаридной цепи в целом и отдельных ее участков, вплоть до моносахаридных звеньев. Очевидна также необходимость изучения реакционной способности полисахаридной цепи, ее отдельных звеньев и различных функциональных групп, что позволит понять механизм взаимодействия углеводсодержащих биополимеров с их партнерами в биологических системах (например, с антителами при иммунологических реакциях), наметить целесообразный путь модификации природного полимера для придания ему нужных свойств и т. д. [c.625]

    БеЛки и пептиды занимают особое место среди биологически важных веществ. Они не имеют себе равных по многообразию и спектру выполняемых ими биологических функций и участвуют, по существу, во всех процессах жизнедеятельности. Среди них мы встречаем ферменты, гормоны, антибиотики, токсины, белки-рецепторы и белки-регуляторы белки образуют строительный материал тканей и органов, лежат в основе защитных систем живого организма (антитела, интерфероны и т. п.), являются ключевыми элементами всех биологических транспортных и энергетических систем. Несмотря на то что многие белки уже хорошо изучены, перед исследователем предстают новые неизведанные просторы мира белков, и в этом отношении надо говорить лишь о нашем вступлении в этот удивительный и загадочный мир. Если вы стремитесь найти новый белок, прослеживая его роль по определенной биологической функции, то сейчас все чаще и чаще вам приходится встречаться с белками новых типов, меняющими наши традиционные представления о свойствах белка и принципах проявления его активности. Это и мембранные белки, существующие и действующие в неполярных средах, и белки рецепторных систем, способные к скачкообразному изменению своей пространственной структуры и, наконец, огромные по размеру белки-ансамбли, с молекулярным весом, достигающим многих сотен тысяч. Все это ставит перед исследователем сложнейшие проблемы, заставляет его постоянно обновлять свой методический арсенал, а колоссальные темпы развития современной науки и стремительный прогресс в изучении живой материи обязывают его находить и идентифицировать эти белки точно и в кратчайшие сроки, отводя не так уж много времени для полного распознания всех уровней структурной организации белка. Это естественно, поскольку настоящее изучение белка, подступ к пониманию его функционирования, начинается лишь тогда, когда структура белка уже расшифрована. [c.3]

    НЫХ основаниях обнаружил, однако, что кровь не просто положительна или отрицательна в отношении многочисленных и иногда, казалось бы, маловажных специфических антител ( иммунных веществ), но что у положительной по этому признаку крови имеются градации концентрации. Если принять во внимание эти факты, то становится очевидным, что каждая проба крови отличается ио своим иммунологическим свойствам. Так как к группам крови привлекается в настоящее время много внимания и этому вопросу посвящено большое число обзоров и монографий [4—7], то нет необходимости детально обсуждать здесь эту проблему. Исследования последних лет показали, что группы крови могут иметь значение, о котором ранее не подозревали. Прежде всего было установлено, что у больных раком желудка кровь типа А встречается чаще [8]. Затем было найдено, что имеется известная корреляция между типом О крови и частотой язвы желудка. После изучения архивов 12 английских госпиталей — в общей сложности ЗОИ историй болезни больных, страдающих язвой, — авторы сформулировали следующий вывод Полученные результаты с замечательной четкостью показывают, что среди больных, страдающих язвой, необычайно высок процент лиц, имеющих кровь группы О, и соответственно меньше больных с кровью, принадлежащей к трем остальным группам [9]. [c.69]


    Иммунохимия — раздел иммунологии, задачей которого является изучение строения, свойств и закономерностей взаимодействия антител и антигенов. [c.552]

    В группу иммуноглобулинов входят три типа соединений, из которых наиболее изучен тип 78 у-глобулинов. Общим свойством гликопротеинов, входящих в группу иммуноглобулинов, является их способность функционировать как антитела. Антисыворотка к одному из них дает перекрестную реакцию с двумя другими, т. е. некоторые антигенные участки у них одинаковы. В табл. 1 перечислены указанные группы гликонротеинов и их наиме- [c.100]

    Наиболее важным и изученным свойством комплемента является участие его в реакции гемолиза эритроцитов (антигена) соответствующей гемолитической сывороткой (антителом). Эритроциты, обработанные такой сывороткой, гемолизируются только при наличии свободного комплемента. Другим важным свойством комплемента является то, что он способен фиксироваться (связываться) в процессе многих реакций антиген—-антитело. Таким образом, гемолизирующие свойства сыворотки можно подавить большинством антител, взаимодействующих с антигенами, или ранее образованным осадком антитела с антигеном. Фиксация комплел1ента связана с включением белка в комплекс антиген—антитело, и, вероятно, этот белок и является тем субстратом, который обладает комплементарными свойствами. [c.688]

Рис. 21-27. Взаимосвязь между основными классами протоонкогенов во внутриклеточной регуляторной сети, отвечающей за восприятие, передачу и реализацию пролиферативного сигнала. В каждом классе указано по одному характерному представителю. Стрелка от А к Б означает, что в нормальной клетке активация А приводит к активации Б напрямую или опосредованно. В схеме использованы данные, полученные при изучении свойств молекул в бесклеточных системах и. отчасти, при изучении клеток, в которых онределенные компоненты были активированы введением онкогена или инактивированы (микроинъекцией соответствующих антител). Существенно, что каждый класс регуляторных молекул представлен многими членами, так что каждая стрелка на схеме скрывает под собой множество параллельных стрелок, соединяющих индивидуальные члены одного класса с индивидуальными членами другого. Более того, члены данного класса могут во многих случаях взаимодействовать друг с другом (например, с помощью взаимного фосфорилирования), а также с членами других классов (и предшествующих, и последующих). Наличие множества параллельных путей передачи сигнала, но-видимому. повышает устойчивость клетки к повреждениям, так что единичной онкогенной мутации в норме недостаточно, чтобы сделать клетк> опухолевой однако сложность этой системы и присутствие многочисленных обратных связей Рис. 21-27. <a href="/info/939508">Взаимосвязь между</a> <a href="/info/491439">основными классами</a> протоонкогенов во внутриклеточной регуляторной сети, отвечающей за восприятие, передачу и реализацию пролиферативного сигнала. В каждом классе указано по одному характерному представителю. Стрелка от А к Б означает, что в <a href="/info/1407475">нормальной клетке активация</a> А приводит к активации Б напрямую или опосредованно. В <a href="/info/1472997">схеме использованы</a> данные, полученные при <a href="/info/564101">изучении свойств</a> молекул в <a href="/info/166462">бесклеточных системах</a> и. отчасти, при изучении клеток, в которых онределенные компоненты были активированы введением онкогена или инактивированы (микроинъекцией соответствующих антител). Существенно, что каждый класс регуляторных <a href="/info/1542029">молекул представлен</a> многими членами, так что каждая стрелка на схеме скрывает под <a href="/info/1795776">собой</a> множество параллельных стрелок, соединяющих индивидуальные члены одного класса с индивидуальными <a href="/info/1501489">членами другого</a>. Более того, члены <a href="/info/1896850">данного класса</a> могут во многих случаях <a href="/info/92130">взаимодействовать друг</a> с другом (например, с помощью взаимного фосфорилирования), а также с <a href="/info/1501489">членами других</a> классов (и предшествующих, и последующих). Наличие множества параллельных <a href="/info/1889534">путей передачи сигнала</a>, но-видимому. повышает <a href="/info/1345940">устойчивость клетки</a> к повреждениям, так что единичной онкогенной мутации в норме недостаточно, чтобы сделать клетк> опухолевой однако сложность <a href="/info/970271">этой системы</a> и присутствие многочисленных обратных связей
    Сравнительное изучение свойств различных соединений, используемых в качестве маркеров в ХИА и флуорохромов, позволило выбрать для проведения иммуноанализа в качестве хемилюминесцентного маркера антигенов — ABEI и флуорохромной метки антител— флуоресцеина (длина волны возбуждения 495 нм, излучения 525 нм). [c.144]

    Рецепторы для гормонов. Изучение строения и функции клеточных рецепторов, в том числе рецепторов для гормонов,— одна из важных проблем биохимии. Значительный прогресс этих исследований связан с обнаружением и изучением свойств аутоантител против клеточных рецепторов для гормонов. Оказалось, что аутоантптела к рецептору для инсулина, будучи добавлены к клеткам печени, вызывают следующие инсулиноподобные эффекты активируют внутриклеточный синтез гликогена и усиливают транспорт аминокислот в клетку. Указанные эффекты вызывают только бивалентные антитела илп их бивалентные F(ab )2-фрагменты, но не моновалентные Fab-фрагменты. Последние способны лишь блокировать связывание инсулина рецепторами (С. Kahn, С. runfeld et al., 1980). [c.266]

    Книгой Антитела. Методы , первый том которой вы держите в руках, издательство IRL Press продолжает свою чрезвычайно популярную серию руководств по биологии Практические подходы , охватывая при этом область иммунологических исследований. Специфичность и антигенсвязывающие свойства антител используются в практике с начала нынешнего века, но за последние 20 лет популярность антител значительно возросла. Среди лабораторий, занимающихся изучением живых систем и биомолекул на физиологическом биохимическом уровне, едва ли найдутся такие, где еще не оценили антитела и не поняли, что это самый удобный, а часто и незаменимый инструмент идентификации, количественной оценки и изучения структуры и биологических свойств различных молекул. Диапазон применения антител чрезвычайно широк с их помощью изучают гормоны животных и растений, ферменты, клеточные рецепторы и маркеры дифференцировки, сывороточные белки, тканевые и клеточные антигены, опухолеспецифи-ческпе, бактериальные и паразитарные антигены и др. Для того чтобы эффективно использовать антитела при решении столь широкого круга задач, необходимо обладать компетентностью в двух тесно связанных областях, а именно уметь приготовить препараты высокоспецифичных антител с воспроизводимыми свойствами, а также выбрать и осуществить необходимый метод, основанный на использовании этих антител. В этой книге оба методологических аспекта сведены вместе. Она посвящена тому,. как получить антитела, проверить их качество, а также как с ними работать. В ней собран богатейший опыт и глубокие знания нескольких моих коллег по отделу иммунологии в Бирмингеме некоторые главы написаны специалистами из других центров. [c.6]

    Весьма интересная в методическом отношении особенность антител иммунных сывороток заключается в их способности узнавать иммуноген, даже если изменились некоторые его физикохимические свойства. Например, противоферментные антитела зачастую распознаются в неактивной форме, а причинами неактивного состояния могут быть действие ингибитора, точковая мутация, удаление простетической группы или присутствие фермента в форме предшественника [1, 23]. Это свойство использовалось для изучения различных (физиологических, биохимических, генетических) аспектов при исследовании растительных ферментов [26]. Другой пример такого свойства продемонстрирован способностью специфических антител очищенных белков, выделенных из экстрактов растительных органов, реагировать с белками, синтезированными in vitro, особенно с теми из них, которые в избытке содержат сигнальный пептид однако примеры, которые дали исследования по молекулярной биологии растений, показали, что в данной области возможны отклонения от этого свойства [29], и поэтому в некоторых случаях для формирования конкретной антигенной структуры необходимы определенные посттрансляционные Модификации. [c.115]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Пептидный синтез служит надежным средством доказательства строения природных пептидно-белковых веществ. Синтетические пептиды широко используются для структурно-функциональных исследований. С помощью химических методов удается получать аналоги биологически активных пептидов, в том числе циклические производные с заданными свойствами (например, с пролонгированным, усиленным или избирательным действием), а также аналоги с остатками небелковых аминокислот. Синтетические пептидные фрагменты белков применяются для изучения их антигенных свойств и получения специфичных к отдельным участкам полипептидных цепей антител, используемых в структурно-функщюналь-ном анализе и в создании диагностикумов и вакцин. Методами пептидного синтеза получаются (в том числе и в промышленном масштабе) многие практически важные препараты для медицины и сельского хозяйства. [c.124]

    Успехи, достигнутые в изучении структуры иммуноглобулинов, оказались возможными благодвря установлению того факта, что каждый вид антител продуцируется отдельной популяцией клеток (клоном). Присутствующие в крови нормальных индивидов антитела являются продуктами секреции множества клонов и представляют собой сложнейшую смесь близких по структуре, но не идентичных белков. В связи с этим в квчестве материала для исследования в настоящее время используются иммуноглобулины пациентов, страдвющих множественной миеломой — заболеванием, при котором трансформированные клетки выделяют в кровь огромные количества иммуноглобулинов (так называемые миеломные белки). Эти патологические иммуноглобулины по структуре и биологическим свойствам являются нормальными иммуноглобулинами, однако секретируются одним клеточным клоном и поэтому гомогенны. [c.212]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Комплексы сывороточных белков с другими веществами белковой природы могут быть также выделены с помощью гель-хроматографии, как это было уже показано на примере комплекса гемоглобин — гаптоглобин (фиг. 16) [49]. Еще проще количественно определить емкость гемоглобина (способность гемоглобина к комплексообразованию) на сефадексе G-100 [50]. Фракция макроглобулинов (выделение на сефадексе G-200), очевидно, содержит белок, связывающий трипсин [51, 52]. Активность при этом сохраняется лишь частично [51, 52]. Комплексы антиген — антитело часто выделяли на пористых гелях, а затем после разложения на составные части исследовали более подробно (см. литературу, приложение IX). В предыдущем разделе на примере инсулина были рассмотрены возможности изучения растворимых иммунокомплексов. Иммунологические методы в сочетании с гель-фильтрацией играют важную роль в исследовании строения Y-глобулинов. Среди работ на эту тему (см. литературу, приложение X) имеются блестящие исследования, посвященные восстановительному расщеплению и выделению L- и Н-цепей, их рекомбинации, ограниченному действию папаина и, наконец, иммунологическим свойствам интактного белка и его фрагментов. [c.218]

    В основе принципа аффинной хроматографии лежит отличительная особенность биологически активных веществ образовывать стабильные, специфические и обратимые комплексы. Если иммобилизовать один из компонентов комплекса, то получится специфический сорбент для второго его компонента, при этом, разумеется, предполагается, что соблюдаются все условия, необ.ходимые для образования этого комплекса. Связывающие участки иммобилизованных веществ должны сохранять хорошую стерическую доступность для второго участника комплекса даже после связывания с нерастворимым носителем и не должны деформироваться. Примерами первых специфических сорбентов, приготовленных путем ковалентного связывания с нерастворимым носителем, были иммобилизованные антигены (Кемпбелл и др. [5]) . Методы, созданные для присоединения антигенов и антител к нерастворимым носителям, были сразу же применены для получения иммобилизованных ферментов. В то же время ранее предложенный азидный способ привязки ферментов к целлюлозе [25] стал использоваться для приготовления иммуносорбентов. Параллельное развитие обоих направлений, основанных на использовании связывания биологически активных веществ с нерастворимыми носителями, наглядно демонстрируют названия первых обзорных статей Реакционноспособные полимеры и их использование для приготовления смол с антителами и ферментами (Манеке [23]), Водонерастворимые производные ферментов, антигенов и антител (Сильман и Качальский [39]) и Химия и использование производных целлюлозы для изучения биологических систем (Великий и Витол [47]). Оба направления продолжали развиваться параллельно и после открытия других более эффективных носителей и разработки методов связывания, позволяющих сохранять свойства иммобилизуемых веществ в растворе. [c.11]

    Области применения аффинной хроматографии расширяются, поокольку метод основан на специфических взаимодействиях биологически активных веществ. Как видно из табл. 11.1, этот метод успешно используется при выделении самых разных соединений. Наряду с этим он полезен при изучении различных систем на аффинных сорбентах можно разделять низкомолекулярные энан-тиомеры и удалять нежелательные вещества из живых организмов. -Например, аффинной хроматографией можно разделить на оптические антиподы 0,Ь-триптофан. Используя специфическое выделение меченых пептидов, можно определить пептиды активного центра фермента, связывающего участка антител или участка пептидных цепей на поверхности молекулы. Аффинная хроматография может быть использована для изучения возможности замены природных пептидных цепей ферментов различными модифицированными синтетическими пептидами. Активные центры ферментов или антител, связывающие свойства субъединиц, специфичность ферментов по отношению к различным ингибиторам, комплементарность нуклеиновых кислот, взаимодействие нуклеотидов с пептидами, влияние присутствия различных соединений на образование специфических комплексов и т. д. могут быть исследованы с помощью аффинной хроматографии. [c.282]

    Широкие стереохимические проблемы встают в связи с изучением агрегатов, образуемых антигенами с антителами. Если количественное соотношение антигена и антитела лежит в опре деленных пределах, то агрегаты антиген—антитело обычно нерас-гворимы. Эти агрегаты обладают некоторыми специальными свой сгвами, такими, как способность фиксации (связывания) комплемента, освобождение гистамина из некоторых его комплексен в клетках и, возможно, активации определенных протеолитических энзимов (ферментов). Высказан ряд гипотез, объясняющих эти явления может быть, они связаны с особой конформацией реагирующего антитела, а возможно, что некоторые черты и особенности структуры агрегата антиген—антитело могут определять эти специфические свойства. [c.688]

    При изучении мутантов бактерий мы сталкиваемся с мутированными белками, измененными в одном аминокислотном звене. Чаще всего подобные мутированные белки имеют одну и ту же антигенную специфичность и образуют одинаковые антитела. Гомологические белки разных видов животных также похожи по своему аминокнслотному составу, хотя и гораздо дальше отстоят друг от друга, чем мутанты в пределах вида. В этом случае антигенные свойства полностью различны. Например, сывороточный альбумин лошади и коровы не сильно отличаются по аминокислотному составу. Однако организм лошади не образует антител к своему белку, но легко образует к чун еродному альбумину коровы. Значит, в клетках лимфатической системы [c.501]

    Химическая индивидуальность, или видовая специфичность, белков легко выявляется серологическим путем. Если животному, например кролику, ввести в кровь чужеродный ему белок (антиген), то в организме вырабатываются специфические антитела, являющиеся белками глобулино-ной природы и находящиеся, главным образом, в у-глобулиновой фракции белков сыворотки крови. Антигены и антитела взаимодействуют друг с другом с образованием осадков (преципитата), что можно наблюдать при добавлении к сыворотке крови животного, которому ввели в кровяное русло чужеродный белок ( иммунизированного животного), того же белка (антигена). Образование осадка носит название реакции преципитации . Эта реакция весьма тонкая и позволяет выявить свойства белков, неуловимые при их хими ческом изучении. Так, например, тщательное химическое изучение гемоглобина крови лошади, овцы и собаки не выявляет каких-либо особенностей в их химической структуре. Между тем при введении этих гемоглобинов в кровь кролика образуются специфические для каждого из них антитела. Известны, однако, некоторые белки, почти не вызывающие образования антител. Гормоны белковой природы (инсулин, некоторые гормоны гипофиза и др.), изолированные из желез внутренней секреции крупного рогатого скота, при введении их в кровь человека (а также животных) практически не вызывают образования антител. Надо полагать, что химические различия в структуре белков-гормонов животных и белков-гормонов человека настолько малы, что они не всегда выявляются серологически. Это обстоятельство имеет большое практическое значение, так как оно позволяет широко применять в медицинской практике белки-гормоны без опасения вызвать при повторном введении их в организм человека реакцию преципитации. [c.38]

    Как велико различие между свободным белком ВТМ и белком, входящим в состав вирусной частицы, можно показать и на примере антигенных свойств. В вирусной частице главны.ми антигенными детерминантами служат С-концевой участок и участок (К)—70. Обе детерминанты, по-видимому, расположены вблизи от поверхности вирусной палочки [8, 11. 432]. Если же антитела вырабатываются на изолированный вирусный белок, они обнаруживают особенное сродство к участку 108—112 [5751. С полющью синтетических аналогов соответствующей части белковой молекулы ВТМ было проведено систематическое изучение роли каждого из аминокислотных остатков в обнаруженном сродстве 1576]. [c.75]

    В ходе биологической эволюции организмы животных и растений выработали специальные факторы собственной защиты против вирусов, бактерий, простейших организмов и других патогенных факторов с целью сохранения своей целостности и биохимической индивидуальности. Способность организмов идентифицировать, нейтрализовать и удалять чужеродные ему химические соединения с целью обеспечения собственной целостности называется иммунитетом (от лат. ттипШз — освобождение, избавление от чего-либо). Синонимы иммунитета — невосприимчивость, сопротивляемость, резистентность. Наука об иммунитете — иммунология наряду с изучением общебиологических основ иммунитета занимается исследованием химического строения, свойств и закономерностей взаимодействия антител и антигенов. Данная область иммунологии называется иммунохимией. [c.484]

    В ноябре 1960 г. мне предложили написать для В.В.А. Library монографию или составить сборник, в котором были бы объединены и рассмотрены современные сведения о мукопротеинах . Эта задача увлекла меня. Из опыта экспериментальной работы по этой проблеме мне стало совершенно ясно, что приготовление, количественный анализ и выяснение структуры мукопротеинов связано с трудностями, не встречающимися вовсе или, по крайней мере, встречающимися не в таком объеме при изучении белков и полисахаридов. Любому работающему в этой области исследований ясно также, что долгое время игнорируемая область мукопротеинов в настоящее время вызывает особый интерес, отчасти сопутствующий, а отчасти являющийся прямым результатом успехов в химии сиаловых кислот. Было показано, что многие мукопротеины содержат сиаловые кислоты, от присутствия которых зависят их характерные физические и химические свойства. Углеводы обнаружены в целом ряде белков, среди которых имеются гормоны, ферменты, антитела, клеточные рецепторы миксовирусов и т. д. [c.7]

    Эту же технику использовали для изучения мембранных белков, не содержащих хромофоров. Вначале к таким белкам присоединяли флуоресцентные лиганды. Обычно для этой цели брали флуоресцентно меченные моновалентные антитела (т. е. фрагменты антител с одним участком связывания антигена и. следовательно, неспособных к сшиванию соседних молекул). Затем эти привязанные лиганды обесцвечивали лазерным лучом, после чего измеряли время, необходимое для того, чтобы мембранные белки, несущие необесцвеченные антитела, переместились путем диффузии в обесцвеченную область (рис. 6-35). Измеренные таким образом скорости диффузии различных гликопротеинов плазматической мембраны обычно оказывались по крайней мере в 5-50 раз меньше, чем у молекул родопсина. Относительно низкие скорости диффузии не являются свойством, внутренне присущим иидивидуаль- [c.374]

    Константная и вариабельная области. Все тяжелые и легкие цепи иммуноглобулинов имеют общее свойство, отличающее их от всех изученных к настоящему времени белков в них имеются константные и вариабельные области. Константная область (С) построена подобно большинству других полипептидов, ее аминокислотная последовательность одинакова у С-цепей всех типов, исключение составляют лишь отдельные аминокислотные остатки, по которым наблюдаются полиморфные варианты. Обычно они выявляются косвенно, по подавлению агглютинации эритроцитов специфическими антителами. Эти варианты обозначаются как группы Gm и Кш (Inv) для тяжелых и легких цепей соответственно. Вариабельные области, напротив, по аминокислотным последовательностям оказались различными во всех изученных к настоящему времени белках миелом. Все вариабельные области легких и тяжелых цепей имеют примерно равную длину-107-120 аминокислот. Константная область легких цепей приблизительно равна по длине вариабельной области. В тяжелых цепях константная область по длине почти в точности соответствует нескольким копиям вариабельной области (рис. 4.63). Константные области тяжелых у -и а j-цепей в три раза, а ц- и е-цепей в четыре раза длиннее сходных областей легких цепей. Более того, все сегменты константной области в некоторой степени гомологичны между собой, т.е. их аминокислотные последовательности, хотя и различаются по многим деталям, но все же настолько сходны, что это не может быть случайностью. [c.102]

    Базальная мембрана полностью окружает мьпиечную клетку, но в области нервно-мьш1ечного соединения имеет особые свойства. Можно, например, получить антитела, связывающиеся только с этим участком. Специализированная базальная мембрана нервно-мьш1ечного соединения, хотя она и кажется в электронном микроскопе несущественной и слабо выраженной структурой, очень важна для пространственной организации компонентов по обе стороны синапса-того места, где нерв передает сигнал мышце. Данные в пользу центральной роли этой мембраны в построении синапса будут подробно рассмотрены в главе 18 (разд. 18.4.3). Этот хорошо изученный пример с очевидностью показывает, что мы еще многого не знаем о базальных мембранах. Он позволяет также предполагать, что специфические (но пока не идентифицированные) компоненты внеклеточного матрикса могут играть определяющую роль в процессах клеточного узнавания, в том числе тех, с которыми связано эмбриональное развитие. [c.239]


Смотреть страницы где упоминается термин Изучение свойств антител: [c.235]    [c.253]    [c.43]    [c.259]    [c.113]    [c.351]    [c.141]    [c.474]    [c.232]    [c.276]    [c.137]    [c.131]    [c.333]    [c.124]    [c.190]    [c.107]   
Смотреть главы в:

Практикум по биохимии Изд.2 -> Изучение свойств антител




ПОИСК





Смотрите так же термины и статьи:

Антитела



© 2025 chem21.info Реклама на сайте