Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточный рецептор структура

    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]


    Для доставки в клетки крупных генетических конструкций (>10 т. п. н.) с помощью эндосом-ного клеточного транспорта, позволяющего избежать лизосомного разрущения ДНК, образуют конъюгат ДНК с другими молекулами. Для этого поли-Ь-лизин ковалентно сшивают с молекулой, связывающейся со специфическим клеточным рецептором, а затем добавляют ДНК. В результате получается компактная, плотно скрученная структура (тор), на внешней поверхности которой располагаются сайты связывания с клеточным рецептором (рис. 21.11). К сожалению, подобный конъюгат, несмотря на свою специфичность, обладает низкой эффективностью трансфекции. Все созданные к на- [c.501]

Рис. 21.11. Система доставки терапевтических генов с использованием ДНК-конъюгата. А. К поли-Ь-лизину пришивают лиганд, соединяющийся с поверхностным клеточным рецептором, и добавляют ДНК, содержащую терапевтический ген. В результате образуется конденсированная структура, на поверхности которой располагаются лиганды. Б. ДНК-конъюгат связывается со специфическим клеточным рецептором (1) и обволакивается клеточной мембраной (2) с образованием эндосомы (3), которая защищает его от лизо-сом. В эндосоме часть молекул ДНК высвобождается из конъюгата и проникает в ядро клетки (4), где и происходит экспрессия терапевтического гена. Рис. 21.11. <a href="/info/199900">Система доставки</a> терапевтических генов с использованием ДНК-конъюгата. А. К поли-Ь-лизину пришивают лиганд, соединяющийся с <a href="/info/327388">поверхностным клеточным</a> рецептором, и добавляют ДНК, содержащую терапевтический ген. В результате образуется конденсированная структура, на поверхности которой располагаются лиганды. Б. ДНК-конъюгат связывается со <a href="/info/1391921">специфическим клеточным</a> рецептором (1) и обволакивается <a href="/info/1532051">клеточной мембраной</a> (2) с образованием эндосомы (3), которая защищает его от лизо-сом. В эндосоме <a href="/info/445072">часть молекул</a> ДНК высвобождается из конъюгата и проникает в <a href="/info/103001">ядро клетки</a> (4), где и происходит экспрессия терапевтического гена.
    Под последним понимают клеточную высокомолекулярную структуру, имеющую специфически повышенное сродство к определенному химическому соединению, которое должно подходить к рецептору своими пространственными и электронными характеристиками, как ключ к замку. Адсорбция низкомолекулярного вешества служит химическим сигналом, побуждающим рецептор изменять свои свойства, что в конце концов реализуется как определенный физиологический эффект. Например, рецептором может быть фермент, находящийся в неактивном состоянии. После взаимодействия с низкомолекулярным эффектором фермент приобретает способность катализировать определенную биохимическую реакцию. С этой точки зрения катехоламины являются эндогенными эффекторами нервной системы и имеют в ней свои рецепторные структуры. [c.431]

    Какие процессы обусловлены способностью белков к специфическим взаимодействиям а) образование надмолекулярных структур клетки б) межклеточное взаимодействие в) транспорт веществ через биологические мембраны г) взаимодействие антигена с антителом д) взаимодействие гормона с клеточным рецептором  [c.52]


    Структура комплекса HLA-DRl-пептид. Антигены главного комплекса гистосовместимости (МНС или у человека HLA) являются трансмембранными гликопротеинами. Они связывают пептиды внутри клетки, в цитоплазматическом пространстве, и доставляют их во внеклеточное пространство, где они становятся доступны Т-клеткам, участвующим в механизме функционирования иммунной системы, идентификации чужеродного антигена и для ответа на его появление [320, 321]. Взаимодействие Т-клеточного рецептора антигена с ассоциированным на МНС (HLA) пептидом стимулирует в Т-клетке экспрессию белков главного центра гистосовместимости. Индивидуальный организм имеет небольшой набор разновидностей таких белков. Между тем факты свидетельствуют о том, что каждый из них обладает способностью связывать огромное количество патогенных пептидов и сигнализировать о необходимости ответных действий. Кажущееся противоречие разрешается благодаря широкому полиморфизму молекул белков МНС, т.е. лабильности их трехмерных структур или, иными словами, возможности принимать отдельными, преимущественно поверхностными, участками белковой глобулы большое число самых разнообразных конформационных состояний. [c.77]

    Одно из существенных свойств эволюции иммунной системы состоит в том, что в процессе ее исторического развития появляющийся вновь признак не исключал предыдущего, от которого он произошел. Так, например, амебоциты (макрофаги) низших беспозвоночных, дав начало лимфоцитам, сохранились для иммунной системы, взяв на себя функцию подготовки антигена к иммуногенной форме и продукции иммунорегуляторных цитокинов. Возникновение доменов иммуноглобулиновых рецепторов В-клеток и антител от доменов Т-клеточных рецепторов не отменило значимую, развивающуюся активность этих последних структур. Примеры подобного рода можно было бы продолжить. Таким образом, специфическая иммунологическая реактивность млекопитающих впитала в себя весь исторический опыт развития иммунных форм защиты — от одноклеточных и низших многоклеточных до высших позвоночных животных. [c.446]

    Другие проблемы, касающиеся первичной и пространственной структуры клеточных рецепторов, рассматриваются в следующих разделах настоящей книги. [c.21]

    Клеточные рецепторы избирательно взаимодействуют с самыми разнообразными по химическому строению веществами — от органических соединений с небольшой молекулярной массой до высокомолекулярных белков. Размеры молекул рецепторных белков, число образующих их полипептидных цепей варьируют (табл. 1). Вполне закономерно поэтому стремление выявить характерные для каждого рецептора особенности структуры участка, ответственного за распознавание лиганда. Вместе с тем анализ функциональных свойств различных по специфичности (т. е. распознающих различные лиганды) рецепторов выявляет определенные черты сходства между ними. Как было показано в гл. 2, прн взаимодействии рецепторов со своими лигандами происходит их активация, выражающаяся либо в усилении ферментативной активности рецепторов, либо в изменении их сродства к внутриклеточным белкам или ДНК. Этот процесс связан с глубокой конформационной перестройкой рецепторных белков, распространяющейся на участки, находящиеся на большом удалении от центров связывания лигандов (активные центры рецепторов). Последнее дает основание считать, что внеклеточные участки различных по специфичности рецепторов, в пределах которых находятся активные центры последних, должны использовать сходные принципы структурной организации, обеспечивающие при связывании любого по строению лиганда изменение конформации внутриклеточных участков молекул рецепторов. [c.43]

    Маркером, характеризующим линию Т-клеток, служит Т-клеточный рецептор для антигена (ТкР). Имеется два различных типа ТкР, и тот и другой — гетеродимеры из двух соединенных ди-сульфидными связями полипептидных цепей. ТкР первого типа образован цепями аир, второго типа, сходный по структуре — цепями у и 5. Оба рецептора ассоциированы на клеточной поверхности с пятью полипептидами СОЗ-комплекса, образуя вместе с ним рецепторный комплекс Т-клетки (ТкР-СОЗ-комплекс см. гл. 7). Пример- [c.23]

    Таким образом, два вида антител — антивариотипические и антиидиотипические — можно использовать для того, чтобы установить, существуют ли в активных центрах клеточных рецепторов структуры, подобные таковым в активных центрах антител. При этом антиидиотипические антитела служат для сравнения акт1шных центров антител и рецепторов, распознающих одни и те же лиганды. Антивариотипические антитела применяют для обнаружения сходных с консервативными участками К-районов иммуноглобулинов отрезков цепей во внеклеточных доменах любого по специфичности рецептора. [c.50]

    Начаты разработки новых поколений биодатчиков на базе аффинных взаимодействий (биосродства) типа фермент-ингибитор, антитело-антиген, агонист (антагонист)-клеточный рецептор, а также на основе полупроводниковых структур и мезоэлектричес-кого эффекта. Последние два биодатчика дают возможность создавать сенсоры, чувствительные к газам, что имеет существенное значение для создания роботов, реагирующих на изменения внешних воздействий. [c.102]


    Установлено, что гормоночувствительная липаза (триглицеридлипаза) находится в жировой ткани в неактивной форме, и активация ее гормонами протекает сложным каскадным путем, включающим участие по крайней мере двух ферментативных систем. Процесс начинается со взаимодействия гормона с клеточным рецептором, в результате чего модифицируется структура рецептора (сам гормон в клетку не поступает) и такой рецептор активирует аденилатциклазу (КФ 4.6.1.1). Последняя, как известно, катализирует образование циклического аденозинмонофосфата (цАМФ) из аденозинтрифосфата (АТФ)  [c.371]

    А. X. применяют гл. обр. в науч. исследованиях для выделения ферментов, антител, антигенов, гормонов, вирусов, клеток. Особенно важно, что этим методом можно выделять следовые кол-ва (до песк. мкг) биологически активных п-в. А. X. примен. также для изучения четвертичной структуры ферментов, их активного центра, механизма действия и структуры нуклеиновых к-т, влияния гормонов иа клеточные рецепторы. [c.60]

    Структура определяет свойства, а свойства определяют функцию. Поэтому для всех молекул, начиная с простейших, например этилового спирта, и кончая очень сложными по архитектуре и очень изменчивыми молекулами белков, молекулярное строение неразрывно связано с их активностью в качестве лекарственных средств, антител, биокатализаторов, гормонов, агентов-переносчи-ков, поверхностных клеточных рецепторов, элементов скелета или мышечных волокон, которые преврашают химическую энергию в работу. [c.179]

    ООО— I ООО ООО молекул метаболитов, поэтому необходимы механизмы вьщеления и усиления регуляторного сигнала гормона. Эти механизмы включают наличие клеток-мишеней и клеточных рецепторов. Клетки-мишени спёцифически настроены на прием управляющего сигнала определенного гормона. Гормон связывается с клеткой-мишенью с помощью специфического рецептора клетки к этому гормону. Рецепторы — это специфические структуры клетки (как правило, сложные белки), обладающие высоким сродством по отношению к гормону. Связывание гормона с рецептором — обяза- [c.377]

    В ноябре 1960 г. мне предложили написать для В.В.А. Library монографию или составить сборник, в котором были бы объединены и рассмотрены современные сведения о мукопротеинах . Эта задача увлекла меня. Из опыта экспериментальной работы по этой проблеме мне стало совершенно ясно, что приготовление, количественный анализ и выяснение структуры мукопротеинов связано с трудностями, не встречающимися вовсе или, по крайней мере, встречающимися не в таком объеме при изучении белков и полисахаридов. Любому работающему в этой области исследований ясно также, что долгое время игнорируемая область мукопротеинов в настоящее время вызывает особый интерес, отчасти сопутствующий, а отчасти являющийся прямым результатом успехов в химии сиаловых кислот. Было показано, что многие мукопротеины содержат сиаловые кислоты, от присутствия которых зависят их характерные физические и химические свойства. Углеводы обнаружены в целом ряде белков, среди которых имеются гормоны, ферменты, антитела, клеточные рецепторы миксовирусов и т. д. [c.7]

    Такая интерпретация, одиако. не вполне удовлетворительна, гак как не объясняет, каким образом происходит селекция в. отсутствие тех чужеродных антигенов, которые позднее будут узнаваться Т-клетками. Одна из возможностей состоит в том, что для выживания и созревания Т-клеток им необходимо слабо связаться с собственными молекулами МНС, и поэтому происходит отбор Т-клеток на слабое узнавание собственных МНС, недостаточное само по себе для активации зрелых Т-клеток активация могла бы происходить голько в том случае, когда объедипепие чужеродного антигена с собственной молекулой МНС дает структуру, с которой Т-клеточный рецептор может связаться прочно. [c.279]

    О связывании пептидов с белками МНС (HLA.) класса II можно судить по результатам рентгеноструктурного исследования Л. Штерна и соавт. [338] пространственного строения комшекса внеклеточной части белка HLA-DR1 с пептидом вируса гриппа НА 306-318 триде-капептидным фрагментом гемагглютинина, мембрашого гликопротеина этого вируса. Дифракционная картина получена сг одного кристалла при -170°, используя синхронное излучение с = i,910 А. Трехмерная структура комплекса HLA-DR1/HA идентифицирована с разрешением 2,75 А. Ее ленточная диаграмма представлена на рис. 1.15. Тридека-пептид НА сорбирован в связывающем центре HL -DR1 в вытянутой, закрученной с большим шагом форме. Она представляет наилучшие возможности для взаимодействий, с одной стороны, с окружающими пептид аминокислотными остатками, а с другой - с поверхностными остатками Т-клеточного рецептора. Таким образок, пептид открыт для межклеточных взаимодействий. Схема реализуемых в комплексе HLA-DR1/HA 12 водородных связей показана на рис. 116. Связи осуществляются только между атомами основной цепи пептида НА и атомами консервативных аминокислотных остатков а-спиральных и (3-струк-турных областей HLA-DR1. Следовательно, систем водородных связей не зависит от конкретной последовательности пептида, т.е. является универсальной для пептидных комплексов HLA-DR1 класса II. Этот факт свидетельствует также о близких ориентациях пептидов в комплексах одновременно относительно связывающих центров белков HLA-DR1 и T R, принадлежащих двум клеткам. [c.79]

    Проявление регуляторных свойств авторы связывают с особенностями гидратации пептидов. Сочетание клатратных структур воды вокруг гидрофобных участков и гидратны) структур около полярных групп позволяет наглядно представить единство молекулярной динамики пептида и его водного окружения. Статистический анализ аминокислотных последовательностей низкомолекулярных пептидов и регуляторных белков обнаружил в их структуре повторяющиеся олигопептидные блоки. Гипотеза, предложенная авторами, состоит в том, что эти блоки составляют основу взаимной индукции регуляторной активности олигопепти-дов и высокомолекулярных белков. В монографии также рассматриваются особенности взаимодействия пептидов с элементами цитоплазматической клеточной мембраны рецепторами и фосфолипидными участками поверхности клетки. Вьщвинуто предположение о том, что не только белковые рецепторы, но и внешний слой мембраны, представляющий собой сложный орнамент положительно и отрицательно заряженных полярных групп фосфолипидов, может исполнять роль клеточного рецептора. Пептиды вследствие своей по-лиамфолитной природы комплементарно взаимодействуют [c.5]

    Ключ к пониманию этой взаимосвязи заключается в структуре мембранных белков. Это одноцепочечные полипептиды, молекулярная масса которых достигает 800 кДа, Весовое соотношение белковых компонентов и липидов в составе большинства плазматических мембран колеблется от I 4 до 4 1 в зависимости от ткани и возраста организма (Като, 1990). При рассмотрении процессов клеточной саморегуляции участки цепей этих белков, находящиеся на внешней стороне мембраны, называют клеточными рецепторами, На фанице раздела мембрана—внешняя среда в сфуктуре белка могут также существовать так называемые шарнирные области с высоким содержанием пролина и лейцина, которые позволяют внешней цепи (рецептору) совершать вращательные движения и подсфаиваться под положение лигандной молекулы (Кульберг, 1987), При изучении процессов клеточного узнавания и формирования иммунного ответа внешние части мембранных белков, чаще всего гликозилированные, называют маркерами клеточной дифференциации (или клеточными детерминантами) и классифицируют по системе D (Ярилин, 1999). [c.118]

    Некоторые авторы считают, что мутации, ведущие к изменению клеточных рецепторов, оказывают меньшее влияние на жизнеспособность бактерий, чем мутации, изменяющие рецепторный аппарат фага, на его жизнеспособность. Из этого делается вывод, что имеется определенная асимметрия возможностей эволюции для фага и бактерий. Вместе с тем положение сложнее, поскольку некоторые фаги в ходе эволюции приобрели (приобретают ) способность обходить ограничения, накладываемые этой асимметрией. Например, у разных представителей семьи Т-четиых фагов Е. соИ при изучении консервативности последовательности нуклеотидов в генах, эквивалентных по функции гену 37 фага Т4 (определяет последовательность аминокислот в белке хвостовых фибрилл и специфичность адсорбции) обнаружили следующее. Хотя эти белки и определяют морфологическую структуру (хвостовое волокно), их консервативность существенно ниже, чем консервативность белков головки. В то же время рецепторы для разных Т-четных фагов очень разнообразны и представлены не только разными белками-компонентами клеточной мембраны, но и небелковыми веществами. Например, рецептором фага Т2 является белок Отр F, фага КЗ — белок Отр А, фага Тб — белок Tsx, а рецептором фага 4 — липополисахарид. [c.201]

    Особенности распознавания антигена Т-клетками и структурные характеристики собственно Т-клеточных рецепторов (ТКР) заставляют дать описание не только антигенраспознающих молекул, их структуры и генетического контроля, но и представить данные о генетической организации и фенотипических хфодуктах МНС, а также рассказать об участии молекулярных структур комплекса в представлении чужеродного (экзогенного) антигена в иммуногенной форме для антигенных рецепторов Т-клеток. [c.85]

    Вторым критерием для включения анализируемого белка в состав суперсемейства служит гомологичность его аминокислотной последовательности иммуноглобулинам. Все изученные к настоящему времени домены по степени гомологии различным доменам иммуноглобулинов делятся на три группы V, С1 и С2. Группа V включает вариабельные домены изотипов иммуноглобулинов и антигенраспознающих Т-клеточных рецепторов. Кроме того, такие белки суперсемейства, как корецепторы Т-клеток — D4 и D8, Poly-IgR, EA, MR OX-2, LINK имеют в своей структуре домены V-группы. Для понимания эволюции суперсемейства иммуноглобулинов следует особо подчеркнуть, что однодоменные белки Thy-1 и Ро также входят в V-rpynny. [c.129]

    Устоялось мнение, что гетерофильной форме взаимодействия предшествовали гомофильные молекулярные отношения. Цепь событий, приведших к формированию антигенраспознающих рецепторов как завершающих молекулярных структур в эволюции суперсемейства, представляется следующим образом (рис. 5.2). Пред-ковые однодоменные белки, связанные с поверхностью клетки, в процессе межклеточного взаимодействия формировали гомодимер (А-А). Подобная форма отношений, очевидно, имела место при возникновении многоклеточных организмов. Гомофильная форма взаимодействия сохранилась до настоящего времени у однодоменного белка Ро и, возможно, Thy-1. В результате тандемной дупликации гена для однодоменного белка и последующих мутационных изменений, затрагивающих контактирующий участок молекулы, стали проявляться гетерофильные клеточные отношения (А-В). Дуплицированные гены экспрессировались в клетках одного и того же или разных типов. Мутационные изменения могли снижать аффинность А-В-взаимодействий, но не отменять их полностью. Возникшие гетерофильные отношения явились источником формирования V-доменов Т-клеточного рецептора (от домена В) и антигенпрезентирующей способности молекул МНС (от домена А). [c.133]

    Качественное отличие поверхностного иммуноглобулина В-клеток от Т-клеточного рецептора состоит в том, что антигенраспознающий рецептор В-клеток взаимодействует собственно с экзогенным пептвдом без включения продуктов МНС в качестве распознаваемых структур. Кроме того, аффинность В-клеточного рецептора к антигенам значительно выше таковой Т-клеточного рецептора. Константа диссоциации (КО) для Т-клеточного рецептора составляет 10- -10 , в то время как этот показатель для поверхностного иммуноглобулина и антител находится в пределах 10- -10 Вероятно, эволюция иммуноглобулинов пошла по линии освобождения зависимости от дополнительных клеточных образований (молекул МНС, корецепторов) и компенсаторного, через усиление аффинности, взаимодействия с экзогенным свободным антигеном. [c.135]

    В очень редких случаях может наблюдаться перекрестная реактивность моноклональных антител по отношению к неродственным антигенам. Это связано со сходным пространственным распределением зарядов, полярности и гидрофобности на отдельных участках таких молекул. Подобная ситуация реализуется, например, при взаимодействии эндорфинов и алкалоидов с одними и теми же клеточными рецепторами. Однако по отношению к моноклональным антителам перекрестная реактивность подобного рода наблюдается крайне редко. Размеры структур, распознаваемых моноклональными антителами, меньше, и распознаются они точнее, чем структуры, распознаваемые смесью поликлональных антител. Учитывая то, что антигенсвязывающий центр антител имеет полицентровую структуру, необходимо помнить, что направленность моноклональных антител к одному эпитопу и высокая специфичность не исключает возможности их перекрестной реактивности с эпитопами схожей химической структуры, хотя при этом обычно наблюдается различие констант связывания. [c.170]

    Ниже будут приведены данные сравнительного анализа первичных структур полипептидных цепей иммуноглобулинов и внеклеточных доменов некоторых рецепторных белков, подтверждающие существование в рецепторах нелимфоидных клеток участков аминокислотной последовательности, гомологичных FR-уча-сткам полипептидных цепей иммуноглобулинов. В настоящем разделе рассмотрены данные иммунологического анализа, свидетельствующие в пользу сходства строения активных центров антител и клеточных рецепторов. [c.49]

    Блокирование активного центра рецептора в этих условиях может означать, что в нем присутствуют структуры, подобные идиотипспецифическим детерминантам антител против инсулина. А так как идиотип антитела определяется прежде всего гипервариабельным и участками К-ранонов его полипептидных цепей, то, следовательно, иммунологическими методами можно показать существование в активном центре клеточного рецептора и антитела к одному и тому же лиганду сходных по строению участков, определяющих специфичность сравниваемых белков (К. Sege, Р. Peterson, 1981). [c.51]

    Приведенные в разд. 3.2 данные о сходстве антигенного строения активных центров ряда изученных к настоящему времени рецепторов, с одной стороны, и антител к тем же лигандам — с другой, согласуются с изложенной выще гипотезой. Однако оставался вопрос, на который еще не было получено ответа. Как известно, гормоны белковой природы (например, инсулин) и еще более сложные по строению белки, каким является lq-компо-нент комплемента, имеют различные по строению антигенные детерминанты. При изучении рецепторов нелимфоидных клеток, распознающих такие сложные по строению лиганды, как перечисленные белки, невозможно достаточно простыми средствами строго доказать, действительно ли одни и те же структуры в молекуле лиганда распознаются клеточным рецептором и антителами к тому же лиганду, так как к каждой антигенной детерминанте этого лиганда образуется особое по специфичности антитело. При сравнении строения активных центров рецептора сложного по строению лиганда, с одной стороны, и антитела к одной из детерминант этого лиганда — с другой, недостаточно установить факт конкуренции за лиганд рецепторного белка и антиидиотипического антитела. Следует считаться с тем, что рецептор через свой активный центр может распознать значительно больший по величине участок молекулы лиганда, нежели активный центр сравниваемого антитела. Антиидиотипическое антитело и в этом случае может создать стерическое препятствие для связывания рецептором лиганда. Вот почему для более строгого доказательства обсуждаемой гипотезы необходимо обнаружить на нелимфоидных клетках рецепторы, способные распознавать простые по строению гаптены, и изучить строение активных центров таких рецепторов, сопоставив его со строением активных центров антитела к тому же простому гаптену. [c.53]

    Установление первичной структуры клеточных рецепторов, за исключением иммуноглобулиновых рецепторов В-лимфоцнтов, начато лишь недавно. Практически все сведения получены на основании данных о нуклеотидной последовательности генов для полипептидных цепей соответствующих рецепторных белков. Следовательно, первичная структура рецепторных белков в большинстве случаев лишь предсказана. Такой подход к изучению клеточных рецепторов исключ ает необходимость проведения трудоемких процедур, связанных с их получением в достаточных для препаративного изучения количествах и в максимально очищенном виде (см. гл. 1). Поэтому использование методов генетической инженерии для накопления рекомбинантной кДНК создает благоприятные возможности как для изучения генов клеточных рецепторов, так и для построения соответствующей им аминокислотной последовательности полипептидных цепей рецепторных белков. [c.57]

    Клеточные рецепторы, как и другие компоненты цитоплазматической мембраны, подвергаются обновлению за счет даспада существующих структур и их новообразования. Эти процессы в случае стационарного состояния клеточного метаболизма находятся в равновесии, вследствие чего содержание рецепторных белков остается в каждую, единицу времени посто ным. [c.77]

    Доказательства существования эффекторного центра, отвечающего за продолжительную циркуляцию иМхМуно-глобулинов, получены на модели IgG, но нет сомнения в том, что аналогичные центры есть в пределах Рс-участков молекул других иммуноглобулинов. По-в,идимому, структура этих центров, равно как и структура распознающих их клеточных рецепторов, неодинакова. Эта обеспечивает селективность контроля за уровнем иммуноглобулинов каждого класса в кровотоке. Конечно, обсуждаемый механизм гомеостатической регуляции уровня иммуноглобулинов один из нескольких (о других пой- [c.125]

    Книгой Антитела. Методы , первый том которой вы держите в руках, издательство IRL Press продолжает свою чрезвычайно популярную серию руководств по биологии Практические подходы , охватывая при этом область иммунологических исследований. Специфичность и антигенсвязывающие свойства антител используются в практике с начала нынешнего века, но за последние 20 лет популярность антител значительно возросла. Среди лабораторий, занимающихся изучением живых систем и биомолекул на физиологическом биохимическом уровне, едва ли найдутся такие, где еще не оценили антитела и не поняли, что это самый удобный, а часто и незаменимый инструмент идентификации, количественной оценки и изучения структуры и биологических свойств различных молекул. Диапазон применения антител чрезвычайно широк с их помощью изучают гормоны животных и растений, ферменты, клеточные рецепторы и маркеры дифференцировки, сывороточные белки, тканевые и клеточные антигены, опухолеспецифи-ческпе, бактериальные и паразитарные антигены и др. Для того чтобы эффективно использовать антитела при решении столь широкого круга задач, необходимо обладать компетентностью в двух тесно связанных областях, а именно уметь приготовить препараты высокоспецифичных антител с воспроизводимыми свойствами, а также выбрать и осуществить необходимый метод, основанный на использовании этих антител. В этой книге оба методологических аспекта сведены вместе. Она посвящена тому,. как получить антитела, проверить их качество, а также как с ними работать. В ней собран богатейший опыт и глубокие знания нескольких моих коллег по отделу иммунологии в Бирмингеме некоторые главы написаны специалистами из других центров. [c.6]

    Определеиие взаимосвязи структуры и функции аитигеиов, например в случае ферментов, антител, гормонов, цитокинов и клеточных рецепторов. Определение дифференцировочных и онкофетальных клеточных антигенов. Идентификация клеточных популяций, включая опухолевые. [c.16]

    Гемагглютинин участвует в прикреплении вируса к клеточным рецепторам, а также в инициации инфекционного процесса. Роль КА менее ясна, но она отщепляет сиаловую кислоту от рецепторов НА на клеточной поверхности и способствует отпочковыванию дочернего вируса от клеточной мембраны. Частицы вируса гриппа формируются в результате процесса почкования в плазматической мембране [13, 55, 122, 179, 182] с липидной мембраной вируса, содержат,ей поверхностные шины, которая извлекается из плазматической мембраны инфицированной клетки [119, 120, 121]. Внутри липидной оболочки находится электронно-плотный слой, состоящий из вирусного мембранного белка (М1). Полагают, что этот белок стабилизирует структуру вирусной частицы. М1 может быть также организатором процесса сборки вируса в плазматической мембране перед почковатаием и созреванием вирусной частицы. [c.32]

    Антитела и клеточные рецепторы для них Структура lgG3 человека [c.103]


Смотреть страницы где упоминается термин Клеточный рецептор структура: [c.458]    [c.24]    [c.282]    [c.58]    [c.99]    [c.136]    [c.33]    [c.35]    [c.57]    [c.58]    [c.58]    [c.112]   
Иммунология (0) -- [ c.115 , c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Рецепторы структура



© 2025 chem21.info Реклама на сайте