Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы кварцевые

    Наибольшая линейная дисперсия приборов ИСП-28 и ИСП-30 (при Я = 2000 А дисперсия составляет 3,5 А/мм, а при 3600— 25,0 А/мм) не обеспечивает решения многих аналитических задач в ближней и видимой инфракрасной области, где дисперсия кварцевого стекла резко уменьшается. Поэтому при определении элементов, основные линии которых Находятся в этой области спектра, заботу следует проводить на спектрографах со стеклянной оптикой. < числу таких приборов относится трехпризменный спектрограф ИСП-51, работающий в видимой области спектра (3700- 9800 А) (рис. 22). Конструкция спектрографа разборная — призменная часть, коллиматорная труба и камерная труба. [c.50]


    Эффект измельчения определяется характером движения ферромагнитных элементов в рабочей камере аппарата. Измельчение частиц обеспечивается как свободным соударением частиц с ферромагнитными элементами, так и в результате стесненного соударения между двумя элементами или элементом и корпусом. Скорость измельчения существенно зависит от соотношения длины ферромагнитных элементов к их диаметру и, по данным работы [2], для измельчения частиц никеля, оксида магния и кварцевого песка в воде имеет максимум //с/= 10 -15. Удельная мощность, вводимая в вихревой слой, составляет 10 кВт/м , что на несколько порядков выше, чем в вибромельницах. Типичные характеристики аппаратов таковы производительность 15- 40 м /ч, диаметр рабочей зоны 70- 128 мм, потребляемая мощность [c.112]

    По другой теории те же структурные элементы, как и в соответствующих кристаллах, располагаются в стеклах не так упорядоченно, как в кристаллах, что схематически показано для кварцевого стекла и кварца на рис. 58 и 59 (конечно, в общем случае следует-представлять себе не плоскостную сетку, а пространственную решетку). Подобными же структурами обладают и стекла ВзО. или АЬОз- [c.158]

    Испытания опытной установки, основным элементом которой был мембранный аппарат с кварцевыми капиллярами (1000 капилляров длиной 1 м, диаметром 180 мкм и толщиной стенки 60 мкм) показали возможность получения из газа, содержащего 0,05% (об.) Не, 85% (об.) СН4 и 14,95% (об.) N2, практически чистого [99,96% (об.)] гелия. Перепад давлений на мембранах достигал 7,0 МПа наиболее эффективной оказалась работа установки при 673 К. Однако трудность изготовления аппаратуры с кварцевыми волокнами, работающей к тому же при высокой температуре, представляет собой существенный недостаток, сдерживающий внедрение процесса в широком масштабе. Кроме того, несмотря на огромную селективность по гелию, удельная производительность аппарата с кварцевыми капиллярами мала — всего 37,0-10- 2 мЗ/(м2-с-Па), т. е. 13,3-10 м (м2-ч-МПа). [c.323]

    Образующиеся газообразные гидриды определяемых элементов и водород вместе с потоком инертного газа по трубке /О поступают в предварительно нагретый до 1000 °С электротермический атомизатор /3, где происходит разложение гидридов и образование свободных атомов определяемых элементов, регистрируемых атомно-абсорбционным спектрофотометром. Атомизатор представляет собой электрически нагреваемую кварцевую трубку диаметром 8—10 мм и длиной 130—150 мм, снабженную окном /2 и патрубком // для ввода газа. [c.173]


    Элемент кварцевый уршакский полимиктовый карбонат [c.80]

    Полная высота спектра определится из следующих соображений. При небольших преломляющих углах 0 вспомогательного диспергирующего элемента (кварцевого клина) приближенно можно считать, что угол отклонения а луча с длиной волны X равен [c.162]

    Источники нагрева инфракрасными лучами подразделяются на два основных типа пустотные лампы накаливания и линейные, или трубчатые, нагревательные элементы (кварцевые лампы, кварцевые трубки, металлические нагреватели сопротивления). [c.308]

    Диспергирующий элемент Кварцевая призма Диффракционная решетка [c.80]

    Инфракрасные нагреватели бывают двух типов — пустотные лампы накаливания и линейные, или трубчатые, нагревательные элементы (кварцевые лампы, кварцевые трубки, металлические нагреватели сопротивления). Лампы накаливания дают излучение, содержащее 86% инфракрасных лучей и мало поглощаемое воздухом. Их помещают обычно внутри зеркальных рефлекторов, обеспечивающих равномерное отражение лучей. В случае применения ламп с зеркальными колбами надобность в рефлекторах отпадает. Линейные нагреватели с цилиндрическими рефлекторами обеспечивают большую равномерность нагрева при склеивании, чем лампы накаливания. [c.353]

    Известен метод выделения гелия с использованием тонких стеклянных капилляров, которые хорошо пропускают гелий и плохо — другие газы. Например, кварцевое стекло пропускает гелий в 1000 раз лучше, чем водород (элемент по своей проникающей способности следующий за гелием). [c.206]

    В других методах для определения двуокиси серы, образующейся при впрыскивании заданного объема раствора толуола к кварцевую печь, используют микрокулонометрические элементы. [c.90]

    Поскольку образование осадка на фильтрующей перегородке сменного элемента фильтра оказывает решающее влияние на эффективность работы ФТО. окончательный выбор оптимального фильтровального материала может быть сделан только на основании результатов эксплуатационных испытаний, так как процессы засорения фильтрующей перегородки кварцевой пылью и естественным загрязнителем, включающим [c.170]

    Мгц и выше). Они представляют собой небольшие кварцевые ампулы, заполненные инертным газом до давления 0,26— 0,4 кПа и содержащие примерно 10 мг летучего соединения определяемого элемента. Газовый разряд в безэлектродных лампах происходит в очень тонком слое непосредственно у сте-нок ампулы (скин-эффект высокочастотного поля). Благодаря этому уширение линий из-за эффекта самопоглощения значительно меньше, чем в лампах с полым катодом, что позволяет получать большую интенсивность излучения. [c.155]

    При производстве вяжущих веществ в качестве сырьевых материалов используются мрамор, мел, известняки, глины, мергели, бокситы, гипс, магнезит, кварцевые породы, железосодержащие руды, лёсс, каолин и др. В составе природных сырьевых материалов присутствуют небольшие (1 —10%) примеси полевых шпатов, магнезита, доломита, соединений, содержащих марганец, барий, титан, фосфор, хром и другие элементы.  [c.177]

    В обычном электроосмосе мы прилагаем извне разность потенциалов к капиллярной системе и отмечаем движение жидкости. В этом же случае движение жидкости происходит во внутренней цепи гальванического элемента, если он построен на пористом теле. Были проведены опыты на кварцевых порошковых системах с элементом Якоби—Даниеля  [c.69]

    В методе амальгамной полярографии большое внимание следует уделять очистке реактивов и воды. Химически чистые реактивы обычно содержат примеси тяжелых металлов — цинка, свинца, меди в количествах, которые препятствуют определению этих элементов при содержании 10 —10" %. Очистить от тяжелых металлов многие легколетучие вещества — воду, кислоты и другие можно перегонкой в кварцевом аппарате. [c.167]

    Печи камерные. Шихту при прокаливании в камерной печи помещают в кварцевый тигель или кювету. В качестве камерной печи применяют высокотемпературную электропечь типа ОКБ-210А (рис. 50). Печь имеет сварной кожух, футерованный огнеупорным и теплоизоляционными материалами. Кожух выполнен из листовой и профильной стали. К его передней стенке крепится на болтах литая чугунная гарнитура. Огнеупорная часть футеровки печи выполнена из шамотного кирпича и из шамота-легковеса. Теплоизоляция выполняется из ультралегковесного и диатомового кирпича. Боковые стенки камеры нагрева выложены специальным фасонным кирпичом из высокоглиноземистого шамота. В пазах кирпичей установлены нагревательные элементы, выполненные или в виде целых стержней с утолщенными выводными концами, или в виде трех карборундовых частей, расположенных вертикально по 6 вдоль [c.174]

    В фотографическом методе спектр исследуе.мой пробы снимают на фотографическую пластинку при помощи спектрографа, обычно с кварцевой оптикой, потому что последние линии большинства элементов расположены в ультрафиолетовой части спектра. Одновременно снимают спектр железа (спектр этого элемента содержит очень большое число линий), который служит шкалой длин волн для идентификации линий в спектре исследуемого элемента. Для расшифровки спектра пользуются спектропроектором, с помощью которого проектируют на экран небольшой участок спектра (т. е. фотографии спектра), увеличенный примерно в 20 раз. [c.225]


    Микрофотометрирование. Для определения железа в пробе кварцевого песка берут линию спектра железа Я = 2510 А. В качестве линии внутреннего стандарта берут линию в спектре кремния Я = 2503 А. При помощи планшета № 10 атласа спектральных линий находят линию кремния (элемент сравнения) I = 2503 А и линию железа X = 2510 А. На микрофотометре МФ-2 определяют величину плотности почернения 5ре линии железа и величину плотности почернения 5з1 линии кремния, затем находят их разность А5 А5 = 5ре — 5з1. [c.241]

    Согласно другой теории, упорядоченное расположение частиц в стеклах объясняется существованием у них тех же структурных элементов, что и в соответствующих кристаллах (например, тетраэдров в кварцевом стекле и в полиморфных кристаллах кремнезема), однако расположение этих структурных групп в пространстве у стекол не так упорядочено, как в кристаллах. В силикатных стеклах катионы металла размещаются между анионами (тетраэдрами 5104), не нарушая структуры остова. [c.65]

    Кремний и некоторые его соединения. Углерод — основной элемент в органической химии, кремний — таковой в неорганической химии. Главная масса-земной коры состоит из силикатных пород, в которых, кроме кремния, находятся кислород, часто алюминий и другие элементы. Конечный продукт так называемого выветривания горных пород — обычный кварцевый песок SiO а. Из смеси его с магнием или алюминием при нагревании получают аморфный кремний  [c.292]

    Взятие навески. Для взятия навески надо иметь в своем распоряжении лодочку (см. рис. 14), капилляры кварцевые или из пирекса (см. рис. 15) и кварцевые пробирки (см. рис. 16). Большие кварцевые пробирки необходимы только для сожжения веществ, содержащих элементы, которые в процессе сожжения образуют нелетучие окислы, т. е. золу . Навески всех летучих жидких соединений берут в капилляры. Гигроскопичные или неустойчивые твердые соединения берут в пробирки с при-тертьши пробками. Если вещество не содержит элементов, образующих при сожжении золу, используют самую маленькую пробирку. Взятие навесок веществ, образующих при сожжении золу, и способы их сожжения будут приведены при описании одновременного определения углерода, водорода и сопутствующего элемента. Кварцевые капилляры не запаивают. Их конец оттягивают настолько, что вещество через этот капиллярный отвод не успевает улетучиться ни в процессе взвешивания, ни при перенесении навески к установке Стеклянные ка- [c.42]

    Такой характер работы распределительных устройств был количественно изучен для элементов, показанных на рис. Х1Х-1 и Х1Х-2, в следующем диапазоне рабочих условий слои кварцевого песка (11т1= 2,4—10,4 см/с) и цирконевого песка и,п = 2,1 см/с) высота слоя Н = 0,3—2,4 м площадь поперечного сечения слоя А = 0,09—6,0 м элементы типа 2. я и 2, б (ширина щели 0,4—2,7 мм, шаг 15,2—31,5 см). [c.688]

    Щелевые элементы типа 1, и использовали для псевдоожижения слоев кварцевого неска, а перфорированные решетки — для гороха, пшеницы и риса. В этпх случаях участки распределительного устройства, на которых прекратилось псовдоожижеиио, были в известном смысле подобны элементу, перешедшему от рабочего режима к нерабочему. [c.688]

    На рис. 5.4, б показана заделка отверстия заподлицо с обоими поверхностями стенки. После отверждения пасты поддерживающую пластину удаляют, а выступающие концы проволоки отрезают. Заделка заподлицо применяется только для элементов аппаратуры, не подверженных нагрузкам. Эрозионный износ корпусных деталей устраняется эпоксидной смолой. Для восстановления изнашивающихся поверхностей может применяться также клеевая композиция, содержащая 30% эпоксидного клея и 70% кварцевого песка. При значительной площади, подвергаемой восстановлению, после нанесения композиции деталь рекомегтдуется обернуть полиэтиленовой пленкой для предохранения от стекания клеевого состава и сохранения формы покрытия. При износе чугунных крышек вакуум-насосов уменьшается производитель-180 [c.180]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    В определенных интервалах коицентрации данного элемента для данной аналитической линии существует линейная зависимость между почернением аналитической линии и логарифмом концентрации элемента. Спектральными методами концентрацию искомого эл( мента определяют по почернению выбранной аналитической линии. Определение проводят на кварцевом спектрографе ИСП-22. Источником возбуждения спектров служит дуга переменного тока, питаемая от генератора РС-9 с угольными электродами диаметром 6 мм почернение линий измеряют на нерогистрирующем микрофотометре Цейса. [c.688]

    Основу керамики составляет наполнитель из природных веществ определенного фракционного состава, таких, как огнеупорные глины, кварцевый песок, шамот, окись алюминия и т.д. В качестве связующих веществ могут служить глины, стекло, щамотобентонитовые массы, андезиты, синтетические полимеры и т.д. Из массы данного состава формуют изделия, которые затем обжигают при температуре 12СЮ... 1300 С. Из керамики изготовляют фильтрующие элементы объемного типа различной конфигурации цилиндры, трубки, диски, свечи и т.д., которые могут обеспечить тонкость отсева от I до 100 мкм и более. [c.120]

    В качестве источников света в современных приборах применяют лампы с полым катодом или же с СВЧ-возбуждением, излучаюхцие линейчатый спектр. Среди них наиболее распространены лампы с по и.ш катодом, которые представляют собой герметичный баллон из стекла с кварцевым окном, гфопускающим ультрафиолетовое излучение. В баллон впаяны два электрода катод в виде полого цилиндра, изготовлешгый из металла, для определения которого предназначена лампа, и анод произвольной формы. При подаче на лампу тока силой 5-30 мА при выходном напряжении 300-800 В пары металла, из которого изготовлен катод, поступают в плазму разряда и испускают свет Поскольку интерв ал длин волн испускаемого света узкий (порядка 0,001 нм), а линии поглощения определяемых элементов заметно шире, аналитический сигнал можно измерять практически селективно. При этом другие элементы не мешают проведению анализа. [c.247]

    Результаты исследований показывают, что кварцевый песок и уршакский песчаник имеют практически одинаковый элементный состав. Содержание основного. элемента - кремния - составляет 92% и 95% соответственно. Полимиктовый песчаник имеет гораздо мемьшее содержание кремния - 68% и более высокое - алюминия - [c.79]

    Схематическое изображение изотермического варианта прибора, работающего по методу точек кнпепия, принедено на рис. 2.7. Основной элемент прибора — узкая длинная кварцевая трубка, в запаянном ко1Н1е которой находится навеска исследуемого вещества, а рядом имеется небольшое углубление для одного из горячих [c.47]

    Продуктами разрушения и выветривания кварцсодержащих пород являются кварцевые пески. Чистый кварцевый песок белого цвета, но чаще он бывает окрашен в коричнево-желтые тона примесями оксидов железа и других элементов. [c.118]

    Сжигание проводят в кварцевых трубках применяя специальные наполнители, добиваются того, чтобы получались необходимые продукты, и способствуют удалению побочных продуктов реакции (SOg, например, окислами свинца, галогены — металлизованной серебром шерстью), при зтом одновременно происходит восстановление окиси азота в азот. Обычно водород и кислород определяют одновременно, азот — отдельно. Водород, абсорбируют в виде воды на a la или другом осушителе, углерод в виде Oj на натронной извести или натронном асбесте. Азот определяют газоволюмометрическим методом. В настоящее время в связи с автоматизацией методов анализа все три элемента испаряют одновременно и затем определяют различными методами, а также методом газовой хроматографии [63, 64]. Большой вклад в развитие элементного анализа внес Либих, который улучшил методы макроанализа, предложенные Преглем, применительно к полумикро- и микроопределениям веществ (навески соответственно 20— 30 мг и <2 мг) [71]. [c.383]

    По этому методу органическое вещество подвергают скоростному сожжению в кварцевой трубке без наполнения. Продукты сожжения попадают в раскаленную зону, богатую кислородом, и окисляются до двуокиси углерода и воды. Этот способ, получивший широкое применение в СССР, положен в основу целого ряда методов одновременного определения нескольких элементов из одной навески вещества. Азот в органических соединениях определяют микрометодом Кирсте-на. По этому методу навеску сжигают в кварцевой трубке при 1050° С. Вместо окиси меди и металлической меди используют окись никеля и никель. Метод отличается повышенной точностью и высокой полнотой сгорания органических соединений. В современных аналитических лабораториях стали внедряться и автоматические приборы Циммермана для определения элементного состава, отличающиеся простотой конструкции и большой скоростью анализа. [c.42]

    Источник излучения. Если в приборе для видимой или УФ-области источник излучения работает обычно в области 0,2—0,4 или 0,35—0,8 мкм, то в ИК-спектрометре он должен перекрыть значительно больший интервал длин волн. Наиболее распространенные источники ИК-излучения — нагреваемые током до 1500—1800° С стержни из карбида кремния (глобар) или из окислов редкоземельных элементов (штифт Нернста). Электрическое сопротивление таких источников уменьшается с повышением температуры, поэтому необходимо использовать балластное сопротивление. Глобар и штифт Нернста дают мощное ИК-излучение, но оно приходится в основном на ближнюю ИК-область и быстро падает с увеличением длины волны. Изменение энергии источника с длиной волны компенсируется в спектрометре программированным раскрытием входной щели прибора. В длинноволновой части ИК-спектра интенсивность излучения этих источников становится недостаточной, и в области ниже 200 см применяют ртутно-кварцевые лампы высокого давления. [c.203]

    Применение металлов подгруппы цинка и их соединений. Большое количество цинка и кадмия расходуется на покрытие изделий из черных металлов в целях защиты их от коррозии. Для этого применяют электрохимические и химические методы. Эти покрытия анодные. Цинк применяется в производстве цинково-угольных элементов (Лекланше), сплавов с медью (латунь, томпак) и как протектор. Кадмий — один из компонентов легкоплавких сплавов (сплавы Вуда, Розе и др.). Его используют как поглотитель нейтронов в регулировании работы ядерных реакторов. Из кадмия готовят электроды щелочных аккумуляторов. Металлическая ртуть применяется для изготовления различных приборов вакуумных манометров и насосов, выпрямителей, ртутных кварцевых ламп, барометров, термометров и т. д. Очищают ртуть фильтрованием через бумагу или замшу и, пропуская ее в виде мелких капель через колонку с раствором нитрата ртути (I), подкисленным азотной кислотой, а также перегоняя в вакууме. [c.364]

    Луч света от источника возбуждения (например, от лампы накаливания для видимой области спектра, газоразрядной водородной или дейте-риевой лампы для УФ-области) проходит через стеклянную или кварцевую кювету фиксированной толщи1гы, заполненную анализируемым раствором. При этом часть световой энергии, соответствующая длине волны собственного (характеристического) электронного возбуждения анализируемого вещества, селективно поглощается этим веществом, тогда как электромагнитная энергия при других длинах волн не поглощается анализируемым раствором. Свет, прошедший через кювету с раствором, направляется на входную щель спектрофотометра, в котором он разлагается в спектр. Обычно применяемые в аналитической практике спектрофотометры обеспечивают достаточно высокую степень монохроматизации света (-0,2—5 нм) за счет применения специальных диспергирующих элементов — призм и дифракционных решеток. После разложения в спектр электромагнитная энергия спета регистрируется автоматически или по точкам в форме спектральной кривой, записываемой в виде фафика функции интенсивности прошедшего света, выраженной чере i пропускание Т или оптическую плотность А, от длины волны Х либо волнового числа V.  [c.524]

    Третья из упомянутых выше реакций давно нашла широкое применение в процессе иодидного рафинирования таких элементов, как Ti, Zr, Hf, Si, Th, Та, Nb. Применительно к бериллию процесс проводился в кварцевом или платиновом контейнере с накаленной до 700—900° вольфрамовой проволокой для осаждения бериллия. Зона испарения иода и зона реакции (Ве + 1г -> Ве1г) находилась в том же контейнере. В отличие от двух предыдущих процессов транспорт (перенос) металла осуществляется в зону с более высокой температурой. Метод не был доработан из-за коррозии аппаратуры. [c.217]


Смотреть страницы где упоминается термин Элементы кварцевые: [c.34]    [c.688]    [c.698]    [c.11]    [c.26]    [c.12]    [c.203]    [c.238]    [c.26]    [c.183]   
Биосенсоры основы и приложения (1991) -- [ c.528 , c.529 ]




ПОИСК







© 2025 chem21.info Реклама на сайте