Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перемешивание противоточная

    При непрерывной противоточной экстракции процесс проводят в колонных аппаратах насадочного или тарельчатого типа. Процесс массообмена в них отличается низкой эффективностью. Для интенсификации массопередачи в подобных аппаратах используют устройства принудительного перемешивания фаз. [c.102]


    Объемная интенсивность питания сравниваемых систем (единичного реактора полного перемешивания и трехступенчатого противоточного каскада) об- [c.370]

    При расчете противоточных колонн может возникнуть необходимость одновременного учета продольного перемешивания по сплошной и дисперсной фазам. В этом случае положительное направление к и начало координат выбирают применительно к одной из фаз. Обычно за начало координат принимают место ввода дисперсной фазы, а за положительное направление к — направление потока дисперсной фазы. Тогда граничные условия для сплошной и дисперсной фаз при стационарном режиме [c.149]

    Ниже изложены методы расчета массо- и теплообмена в противоточных колоннах с учетом продольного перемешивания в рамках диффузионной модели. Экспериментальные данные подтверждают применимость диффузионной модели для колонных аппаратов при не слишком малых отношениях высоты колонны к ее диаметру. [c.231]

    В данной главе изложены методы расчета степени извлечения и высоты прямо- и противоточных колонн при протекании необратимых и обратимых химических реакций в сплошной фазе с учетом продольного перемешивания. Методы разработаны в основном дпя потока сферических частиц, применительно к барботажным, распылительным и тарельчатым колоннам. Исключение составляет раздел 7.1, в котором рассматриваются методы расчета процессов в кинетической области, применимые дпя любого типа колонных аппаратов. [c.286]

    Массообмен, осложненный бимолекулярной необратимой химической реакцией в дисперсной фазе при постоянной концентрации в сплощной фазе рассмотрен в гл. 6. В настоящем разделе обобщим полученные в гл. 6 результаты применительно к прямо- и противоточной колонне с учетом продольного перемешивания. [c.307]

    Представляет интерес предложение заполнить колонну кольцами Рашига. В этом случае перемешивание окисляемой жидкой фазы по высоте будет резко ограничено, режим работы приблизится к противоточному и окажется возможным выводить из колонны битумы с разной степенью окисления на различной высоте [203]. Пока сведения о промышленной проверке предложения отсутствуют. [c.137]

    Принципиальным недостатком процессов в псевдоожиженном слое является режим, близкий к режиму идеального перемешивания. Коэффициент использования катализатора при таком режиме относительно низок. Для устранения этого недостатка была предложена схема реакторного блока, в котором общий объем псевдо-ожиженного слоя катализатора распределяется по тарелкам пары или газы в нем движутся противотоком к гранулированному материалу. Эскиз ступенчато-противоточного реактора показан на рис. 20. По данным [12], интенсивность регенерации в этом аппарате в 9—12 раз, а интенсивность крекинга в 2—3 раза выше, чем в обычном. [c.57]


    Ю. В. Аксельрод и др.566 дали математическое описание кинетики противоточной абсорбции, осложненной необратимой реакцией, учитывающее распределение концентраций по высоте абсорбера, в частности в результате продольного перемешивания. Доп. пер. [c.220]

    В колоннах с провальными тарелками с достаточной достоверностью можно принять поршневое движение газа и полное перемешивание жидкости на каждой ступени. В этом случае, пренебрегая влиянием уноса жидкости, при большом числе тарелок в колонне движущую силу можно рассчитывать как для противоточного аппарата с непрерывным контактом фаз. Оценочный расчет показывает, что в нашем примере число тарелок велико, поэтому можно воспользоваться указанным приближением и определить движущую силу как среднелогарифмическую разность концентраций (см. раздел 1.2). [c.109]

    Полная математическая модель изотермического противоточного ДЖР, аналогичная (7.1), (7.2), но учитывающая продольное перемешивание, имеет вид  [c.138]

    Дана схема противоточной четырехступенчатой промывки на ленточном фильтре, причем на последнюю ступень поступает чистая вода, а фильтрат с первой ступени выводится из установки после каждой ступени фильтрат поступает в соответствующий промежуточный сосуд [253], Приведен расчет противоточной промывки, в соответствии с которым общее количество промывной жидкости, используемое на данной ступени, распределяется на п равных частей, последовательно контактирующих с осадком в результате каждого контакта в осадке и промывной жидкости устанавливается одинаковая концентрация растворимого вещества согласно условиям идеального перемешивания. Получены уравнения для определения концентрации растворимого вещества в осадке при известных значениях отнощения объема промывной жидкости к объему осадка, числа ступеней промывки и п величина п зависит, в частности, от толщины, пористости и дисперсности осадка, конструкции фильтра и находится экспериментально. [c.228]

Рис. 2-26. Схема аппаратуры трехступенчатой противоточной экстракции с оборотом растворителя (расположение аппаратуры горизонтальное, с перемешиванием в насосах) Рис. 2-26. <a href="/info/386398">Схема аппаратуры</a> трехступенчатой <a href="/info/5754">противоточной экстракции</a> с оборотом растворителя (<a href="/info/938251">расположение аппаратуры</a> горизонтальное, с перемешиванием в насосах)
    Контактные сушилки. Трубчатая сушилка состоит из вращающегося барабана, внутри которого концентрически расположены трубы в один, два или три ряда. При сушке липкого материала применяются трубчатые сушилки с одним рядом труб. Подъемные перегородки обычно помещаются за трубами во избежание перемешивания твердых веществ. Характер движения газового потока и твердых веществ практически всегда противоточный в сушилке данного типа, [c.159]

    Более быстрому растворению способствует измельчение исходного сырья, т. е. возрастание Рср. Растворение проводят в реакторах с механическим или пневматическим перемешиванием. Возможно применение противоточных смесителей (например, шнековых) с механическим перемещением твердого материала навстречу потоку растворителя. Противоток позволяет повысить значение Ср — Со в конце растворения твердого вещества. [c.100]

    Поскольку образование полимеров приводит к повышенным расходам кислоты и олефина, его следует свести к минимуму. Эта реакция, как и при алкилировании, тормозится при низких температурах, особенно в той зоне абсорбера, где находится самая сильная кислота, например на верху противоточной колонны. Малое время контакта и сильное перемешивание также тормозят образование полимеров. [c.235]

    Процессы массообмена, проводимые в противоточных аппаратах, на практике обычно сопровождаются продольным перемешиванием, которое уменьшает величину движущей силы переноса вещества из фазы в фазу, что приводит к снижению числа единиц, переноса массы, рассчитанного на основе чистого противотока. Исследования показали, что в некоторых промышленных аппаратах. 60—75% их эффективной высоты теряется вследствие продольного перемешивания. [c.59]

    Принципиальным недостатком процессов в кипящем слое является режим, близкий к режиму идеального перемешивания. В результате коэффициент использования катализатора относительно низок. Для устранения этого недостатка Д. И. Орочко с соавторами предложил схему реакторного блока, в котором общий объем кипящего слоя катализатора распределяется по тарелкам при этом пары или газы движутся в противотоке с гранулированным материалом . Эскиз ступенчатого противоточного реакторного блока такого типа показан на рис. 70. По данным авторов, интенсивность регенерации в аппарате в 9—12 раз, а интенсивность крекинга в 2—3 раза выше, чем в обычном . Принцип секционирования слоя нашел отражение в проектных разработках отечественных вариантов крекинг-установок (см. стр. 201). [c.207]


    Продольное перемешивание в стекающей пленке. При математическом моделировании пленочных реакторов необходимо знать характер продольного перемешивания жидкости в пленке. На основе анализа диффузионной модели перемешивания и в результате экспериментального изучения влияния физических свойств жидкости (р, V, а), длины пробега пленки (Я) и скорости противоточно движущегося газа в 148 [c.148]

    Интенсивность окисления кокса дополнительно возрастает при горизонтальном (последовательном) секционировании регенератора, обеспечивающем противоток воздуха и закоксованного катализатора с возможно меньшим перемешиванием твердой фазы между зонами. Исследованиями [136], проведенными на лабораторной установке, показано, что при одной и той же глубине регенерации применение шестисекционного ступенчато-противоточного аппарата позволяет сократить фиктивное время пребывания аморфного катализатора в регенераторе примерно в 9—10 раз в сравнении с работой в односекционном псевдоожиженном слое (рис. 4.50,а и б). Опыты проводили при температуре около 600°С на аморфном катализаторе со средним диаметром частиц 0,3 мм и начальным содержанием кокса 0,96—1,72% (масс.). Степень интенсификации регенерации повышается с ростом ее глубины. Так, если для степени регенерации, равной 50% (отн.), ступенчатый противоток сокращает время пребывания в 6,5 раза, то для степени регенерации 95% (отн.) это сокращение времени достигает [c.156]

    Для экстракции используют аппараты разных типов, включая насадочные колонны и колонны с перфорированными тарелками, ротационно-дисковые экстракторы, пульсационные экстракторы и аппараты с наборами вибрирующих сит. 0(5-шим недостатком всех этих конструкций оказывается сравнительно небольшая скорость встречных потоков, а также трудность повышения интенсивности массообмена. Дело в том, что хотя применение перемешивания или пульсации и развивает контакт между фазами, но при этом рост интенсивности массообмена ограничивается трудностью разделения образующихся при зтом тонкодисперсных эмульсий "вода-растворитель". Упомянутое противоречие разрешается при использовании центробежных экстракторов, в которых фактор разделения в 50—500 раз превышает напряженность поля земного тяготения. Очень важным преимуществом центробежных противоточных экстракторов непрерывного действия оказывается и их компактность (единовременно находящееся в цикле количество растворителя в 40—60 раз меньше, чем при использовании колонных экстракторов). [c.380]

    Хотя процесс противоточной экстракции проще всего проводить в колонном аппарате, однако применение последнего возможно лишь тогда, когда при температуре процесса потоки имеют низкую вязкость, что позволяет с помощью тарелок или насадки осуществить надежное перемешивание фаз, и если в сравнительно ограниченном межтарелочном пространстве обеспечивается хорошее разделение фаз. Последнее зависит не только от вязкости, но и от разности плотностей потоков. [c.430]

    Для повышения эффективности поглощения применяют двух-или трехступенчатые противоточные схемы с интенсивным перемешиванием с помощью пропеллерных мешалок, насосов-смесителей или инжекторов. Лучшие результаты получены в реакторах интенсивного перемешивания с герметичным приводом. Каждая ступень поглощения состоит из смесительного насоса, отстойника и холодильника. [c.220]

    При малой разности плотностей фаз внутренняя энергия потоков, как было показано ранее, оказывается недостаточной для диспергирования одной жидкости в другой поэтому при экстракции в контактирующие жидкости вводится дополнительная энергия в результате их механического перемешивания. Тем не менее в обычных экстракторах (с механическим перемешиванием) противоточное движение жидкостей обусловлено разностью плотностей фаз, и в таких аппаратах невозможно достичь больших скоростей потоков. Замена разности плотностей фаз как движущей силы ПРОТИВОТОЧ1НОГО движения жидкостей центробежной силой (в несколько тысяч раз превышающей силу тяжести) В быстро вращающихся машинах обеспечивает высокие скорости движения жидкостей через аппарат и соответственно уменьшает необходимый объем экстрактора. [c.597]

    Рассматриваемые реакции обменного разложения являются гетерогенными, так как металлическая и солевая фазы не смешиваются друг с другом, взаимодействие может происходить только на поверхности раздела фаз. Чтобы усилить взаимодействие, иеоб.ходимо обеспечить хорошее перемешивание, противоточный про- [c.328]

    Расчет всех типов трубчатых реакторов должен базироваться на правильно сформулированных уравнениях материального п энергетического балансов (простейшие из них выведены в разделах 1Х.1—1Х.З) и разумных принципах расчета (раздел IX.4). Далее мы обсудим некоторые задачи оптимального проектирования. Хотя найденные нами оптимальные решения (раздел IX.5), не могут быть практически реализованы, они дают наиболее высокие возможные показатели процесса, к которым надо стремиться при детальном проектировании реактора. Соотношение между теоретическим и практическим оптимальным расчетом мы обсудим, исследуя в разделе IX.6 реакторы с прямоточными и противоточными тенлообменнп-ками. В разделе IX.7 будут затронуты некоторые проблемы устойчивости и регулирования трубчатых реакторов. В конце главы мы рассмотрим некоторые усложнения простой одномерной модели реактора и исследуем влияние продольного перемешивания и поперечного профиля скоростей (разделы IX.8 н IX.9). Структура главы показана на рис. IX.1. [c.256]

    В, С, О, I. Видно, что слабое увеличение Т за линию L приводит к резкому скачку температуры от О V. Н. Аналогично, при постепенном уменьшении Т, процесс проходит последовательность стационарных режимов, соответствующих точкам I, Н, С, Р, с дальнейшим резким падением до точкп В и далее к точке А. Это приводит к гисте-резпсным кривым, изображенным на рис. IX.20. Неопубликованные вычисления для противоточного реактора с независимым теплоносителем показывают еще более резкие эффекты. Можно сказать, что в реакторах с противоточным теплообменником тепло реакции, выделившееся в некоторой точке, вместо того, чтобы вымываться потоком, как это было бы в отсутствие обмена теплом с теплоносителем, может возвращаться вверх но течению реагирующей смеси, способствуя образованию высоких температурных пик. К аналогичным эффектам может приводить продольное перемешивание потока, как это было показано в работе Ван Хирдена и в более поздней статье Амундсона (см. библиографию на стр. 303). [c.285]

    В настоящей главе приведены методы расчета степени извлечения (нагрева) и высоты противоточных колонных аппаратов без и с учетом продольного перемешивания, а также процессов растворения и массотеплообмена в распьшительных колоннах. [c.217]

    Представленная выше зависимость содержания кислорода в газах окисления от высоты барботажного слоя получена по результатам работы промышленных колонн с соотношением высоты барботажного слоя и диаметра в пределах примерно от 2 до 7. Изменение этого соотношения в указанных пределах не влияет на эффективность поглощения кислорода- воздуха барботажным слоем.. Однако не исключено, что дальнейшее увеличение отношения высоты колонны к диаметру может заметно улучшить использование кислорода воздуха, поскольку прп этом ухудшаются условия для продольного перемешивания жидкой фазы по принципу работы реактор начинает приближаться к противоточному, и газы с меньшим содержанием кислорода будут реагировать с менее окисленным, т. е. свежим сырьем. Здесь нужно отметить, что в лабораторном масштабе показано [86] ускорение процесса окисления при увеличении отношения высоты к диаметру от 1 до 16, но результаты исследования не позволяют определить, за счет чего получен этот эффект в результате увеличения отношения высоты к диаметру при неизменной высоте или только в результате увеличения высоты, которому при неизменном диаметре сопутствует увеличение отношения высоты к диаметру. Для решения задачи нужны дополнительные исследования, но полученные выводы будут представлять, вероятно, теоретический интерес. [c.65]

    IX-1-6. Продольное перемешивание. Как отмечалось в разделе VI П-1, при расчетах противоточной абсорбции в насадочных колоннах обычно принимают, что и газ, и жидкость движутся поршневым потоком , в котором элементы жидкости, входящие в колонну в одно и то же время, движутся через аппарат, не опережая и не отставая друг от друга, и выходят из него также одновременно. Известно, что такое допущение об идеальном вытеснении не совсем точно отражает реальную картину и что на самом деле происходит некоторое перемешивание, или обмен местами между элементами потока, входящими в колонну не одновременно. Измерения степени перемешивания жидкости и газа проводились, например, Де Мариа и Уайтом Сэтером и Левеншпилем и Де Ваалем и Мэмереном [c.219]

    К числу достоинств метода пневмодиспергирования следует отнести полное отсутствие каких-либо механических турбулизаторов потока внутри аппарата (что особенно ценно при работе с агрессивными жидкостями) и легкость регулировки процесса перемешивания путем изменения расхода барботирующего газа. Конструктивное оформление барботажного экстрактора может быть различым. На рис. 3-96 представлена схема противоточного смесите л ь н 0-0 тстойного экстрактора непрерывного действия, каждая ступень которого состоит из смесителя / и отстойника 2, соединенных между собой переливным патрубком 3. В нижней части смесителя 1 имеется распределительная коробка 4 для газа, подводимого по трубке 5, и легкой жидкости, вводимой через штуцер 6. Газ, выходящий из сопел распределительной коробки, барботирует через слой жидкости, обеспечивая интенсивную тур-булизацию потоков в смесителе, и уходит в распределитель вышестоящей ступени. Сопротивления сопел распределительной коробки и газовой трубки 5 должны быть такими, чтобы в верхней части смесителя нижестоящей ступени образовывался газовый слой высотой h. Наличие газового слоя устраняет переброс жидкости вместе с газом в смеситель вышестоящей ступени. Отстойник 2 выполнен в виде спирального канала, что создает благоприятные условия для расслаивания. Спиральный канал устраняет перемешивание жидко-костей во всем объеме отстойника и гасит пульсации, передаваемые из смесителя. Исследования, проведенные в ЛТИ им. Ленсовета, показали, что такой экстрактор может работать при плотностях орошения (отнесенных к площади сечения смесителя) до 30 м 1м час с -r =0,85-1-0,9, достигаемым путем изменения расхода газа.—Дополн. редактора. ] [c.280]

    Многоступенчатые экстракторы с вертикальным расположением камер показаны на рис. 3-22 и 3-23. В э к с т р а к то р е М а к Киттрика [24] (рис. 3-22) камеры перемешивания 1 расположены друг над другом. Через них проходит вертикальный вал с мешалками 2. Пространство отстаивания образуют трубы 8, представляющие собою продолжение камер перемешивания и находящиеся на середине их высоты. Из каждой такой трубы по верху течет легкая жидкость 9, а по низу—тяжелая 10 в следующие ступени. Общее протекание жидкостей по экстрактору— противоточное, а в отдельных ступенях—прямоточное. Благодаря циркуляции между камерами количественные отношения фаз в камере перемешивания не зависят от отношения, в котором они поступают в экстрактор. Интенсивность перемешивания должна быть [c.288]

    На большинстве установок селективной очистки процесс экстракции осуществляется в противоточных насадочных колоннах, которые из-за недостаточной степени контактирования фаз не обеспечивают требуемой глубины извлечения низкоиндексных компонентов из очищаемого сырья. Глубина извлечения масляных компонентов при использовании колонн такого типа при одноступенчатой экстракции составляет 85—90% (масс.) от их потенциального содержания в сырье. Для повыщения разделяющей способности и производительности экстракционных колонн на ряде установок вместо насадки используют жалюзийные и перфорированные тарелки, позволяющие повысить производительность по сравнению с насадочными колоннами на 15—20% (масс.) при очистке дистиллятного сырья. Эффективность экстракции в процессе селективной очистки может быть повышена при создании пульсаци-онного режима в насадочных колоннах [48] или замене насадки в верхней части колонны на вращающиеся вибрирующие тарелки [49]. Улучшить контакт между сырьем и растворителем в экстракционных колоннах можно, пропуская противотоком к движению растворителя инертный газ с пульсирующим изменением его расхода [50]. Такой способ экстракции позволяет вследствие увеличения дисперсности и перемешивания движущихся потоков с учетом пульсационного режима повысить степень извлечения из сырья компонентов, ухудшающих эксплуатационные свойства масел. [c.101]

    Комплексообразование без перемешивания может происходить только в случае депарафинизации спиртовым или насыщенным водно-опиртовым раствором карбамида, что объясняется растворением смол и других ПАВ в спирте. Кроме того, при осуществлении такого процесса обе фазы достаточно растворимы друг в друге. Кроме перемешивания для создания контакта карбамида с углеводородами нефтяных фракций предложены другие способы противоточное контактирование раствора карбамида и нефтяного сырья, которое можно осуществлять в колоннах [76] пропускание сырья через неподвижный слой карбамида [Й6, с. 78—80] перемешивание при помощи инертного газа [77] и др. [c.238]

    Аппарат в виде колонны с расширением в верхней части, которое служит для улавливания брызг и вместилищем для образующейся пены, изготовляется из ферросилиция или из нержавеющей стали. Каждая полка барботажной гидратационной колонны по степени перемешивания газа и жидкости ближе к режиму смешения, чем к режиму вытеснения. Однако вследствие значительного количества полок процесс можно рассчитывать по модели вытеснения при противоточном движении фаз. Температура в гидрататоре при помощи острого пара поддерживается в пределах 90— 100°С. Газы, выходящие из верхней части гидрататора и содержащие ацетальдегид, непрореагировавший ацетилен, водяные парР . и другие примеси, поступают в холодильники. В первом конденсируются пары воды, возвращаемые в гидрататор, а во втором — ацетальдегид и вода, направляемые в сборник. Нескондеисировав-шиеся газы подаются в абсорбер, где альде[ид извлекается водой, охлажденной до 10°С, а пепрореагировавший ацетилен возвращается снова в процесс. При этом около 10% газа непрерывно отбирается с целью удаления азота и диоксида углерода, чем и предотвращается их чрезмерное накопление в циркулирующем газе. Ацетальдегид далее подвергается ректификации. Выходящая из гидрататора катализаторная жидкость направляется в отстойник (для улавливания ртути) и затем на регенерацию. Катализатор-иая жидкость содержит примерно 200 г/л серной кислоты, 0,5— [c.183]

    В вихревой трубе обеспечивается эффективное температурное разделение поступающего сжатого газа на охлажденный и нагретый потоки. Данное явление, открытое еще в 1931 г. Жозефом Ранком, до настоящего времени полностью не раскрыто, хотя предложено много гипотез для его объяснения [9, 10, 12-14]. Так, сущность вихревого эффекта пытались объяснить только перестроением в сечении соплового ввода ВТ свободного вихря в вынужденный, под действием сил трения, расширением истекающей струи из соплового ввода в осевую зону и сжатием ее в периферийной зоне ВТ за счет центробежных сил. Наиболее глубокое теоретическое объяснение вихревого эффекта в противоточной трубе, подтверждаемое экспериментами, дано А. П. Меркуловым [9], принявшим за основу гипотезу взаимодействия вихрей Г. Шепера [13] и теоретические предположения Ван Димтера [14] об энергетическом обмене в вихревой трубе за счет турбулентного перемешивания потоков. Многие специалисты по вихревому эффекту у нас в стране считают данную теорию наиболее полной. А. В. Мартынов и В. М. Бродянский [10] дали несколько иное толкование механизма вихревого процесса в трубе. [c.27]

    Так как термин стационарное состояние означает только условие, при котором все производные по времени от переменных состояния равны нулю, то для исследования устойчивости и множественности решений необходимо более точно определить систему. Выше было показано, что для трубчатых реакторов идеального вытеснения возможны только единственные профили. Однако когда процессы в реакторе более сложны, существует возможность появления множественных стационарных состояний [Ван Хирден (1958 г.)1. Противоточное движение может быть результатом не только рецикла или управления с обратной связью, но и эффектов обратного перемешивания, как это показано в экспериментальных работах Вика и Вортмейера (1959 г.). Вика (1961 г.), Падберга и Вика (1967 г.), а также Вика, Падберга и Аренса (1968 г.). [c.130]

    Доказано также, что не имеет значения, является ли течение внутри труб первого хода противоточным (как это показано на рис. 3) или сднонаправленным по отношению к течению теплоносителя в межтрубном пространстве [44]. В дальнейшем в [45 были проанализированы схемы с четырьмя ходами теплоносителя внутри труб. Было установлено, что расхождения с базовым вариантом не очень велики. Поэтому уравнение (6) счи гается справедливым для любого четного числа ходов теплоносителя в трубах. Для бесконечного числа ходов -диаграмма переходит в случай перекрестного- течения с перемешиванием внутри потока каждого теплоносителя ( 1.5.3). Даже в этом предельном случае значения / , если они больше 0,7, отличаются от решения для варианта 1—2/ / не более чем на 2%. [c.46]

    Основной недостаток колонн по сравнению с экстракторами механического перемешивания стандартной конструкции заключается в их т денции к захлебыванию. Противоточные колоннье характеризуют игаксимально возможной относительной скоростью двух фаз. Она зависит от физических свойств жидкостей, размеров системы и расхода энергии, подводимой к мешалке. При превышении максимальной относительной скорости выходные потоки загрязнятся противоположной фазой (захлебывание), и экстрактор больше не сможет работать удовлетворительно. [c.164]

    Перемешивание вдоль оси аппарата при этом, в свою очередь, может вызываться самыми разнообразными причинами. Оно может происходить под действием механической мешалки или вследствие естественной конвекции, обусловленной разностью плотностей жидкости в различных точках (например, в выпарных аппаратах с естественной циркуляцией, описанных в главе IX). Оно может быть также обусловлено турбулентной диффузией или увлечением частиц потока одной из фаз потоком другой фазы при их противоточном взаимодействии (например, при захвате некоторой доли двужущейся вниз жидкости поднимающимися пузырями газа при барботаже) и другими причинами. [c.120]

    Внимание, привлеченное результатами теоретического анализа преимущества прямотока перед противотоком жидкости на смежных тарелках, проведенное Киршбаумом и Льюисом в 1935 г., не получило широкого использования в промышленности из-за необоснованной идеализации ими структуры потока жидкой и паровой фаз моделью идеального вытеснения. Нами была составлена структура комбинированной математической модели потока жидкости для трех смежных тарелок и получена оригинальная усредненная структура М-й тарелки при прямотоке и противотоке жидкости [1], [2]. Аналитическое решение систем уравнений массопередачи для двух вариантов движения жидкости, при условии полного перемешивания пара, позволило получить зависимости КПД аппарата для них. Из проведенного анализа параметрической чувствительности эффективности прямотока и противотока следует, что усилия ученых и конструкторов, работающих в области интенсификации массообменных тарельчатых агшаратов не дадут желаемого результата при противоточном движении жидкости на тарелках. Поэтому при конструировании барботажных аппаратов с переливом необходимо сочетание идеальной структуры пенного слоя на тарелках (идеальное вытеснение) о однонаправленным движением жидкости на них. Проектный расчет числа тарелок по разделению смеси аце-гон-вода этанол-вода на Уфимском заводе синтетического спирта показал, что при однонаправленном движении жидкости число тарелок снижается на 30,,.50%. [c.171]

    После отстаивания в течение 3—5 час. отделившийся слой щелочных мыл спускают и в этой же мешалке промывают масло подщелоченной водой при 50—55° и при перемешивании около 40 мин. После четырехчасового отстаивания масло направляют в промывочные чаны, где промывают его еще 2—3 раза подщелоченной водой для последней промывки пользуются паровой водой. Промывные воды используют противоточно дву-и трекратно, т. е. для первой промывки — воду от второй промывки, для второй — воду от третьей промывки. Если масло хорошо промыто и натровая проба оценивается в 1 балл, масло подвергают подсушке струей воздуха при 80—85°. [c.329]

    Движущая сила зависит от способа растворения и типа аппарата-растворителя. Например, при осуществлении периодического процесса в резервуаре с мешалкой движущая сила при хорошем перемешивании практически одинакова во всех точках системы, но уменьшается во времени вследствие роста концентрации х раствора. В непрерывнодействующих аппаратах-растворителях, в которых осуществляется противоточное или прямоточное движение твердой и жидкой фаз, движущая сила изменяется в направлении движения потоков,, но остается неизменной во времени для любой их координаты. Для расчета процесса растворения обычно используют среднелогарифмическую величину движущей силы, вычисляемую по начальному и конечному ее значениям. [c.218]


Смотреть страницы где упоминается термин Перемешивание противоточная: [c.183]    [c.421]    [c.161]    [c.56]    [c.291]    [c.233]    [c.46]   
Псевдоожижение (1974) -- [ c.270 , c.271 ]




ПОИСК







© 2025 chem21.info Реклама на сайте