Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции органические элиминирования

    По простейшим типам механизмов реакций органические реакции делятся на четыре категории, а именно присоединение, замещение, элиминирование и перегруппировка. Эти реакции, называемые также элементарными, протекают либо сами по себе, либо как составная часть более сложных реакций. [c.107]

    Изучив реакции элиминирования, мы перейдем к рассмотрению соединений, содержащих связь металл — углерод. Такие соединения обычно называют металлорганическими соединениями . Хотя имеется множество типов металлорганических соединений, мы сосредоточим наше внимание на одном из наиболее многосторонних из когда-либо открытых реагентов — реактиве Гриньяра. Реактив Гриньяра содержит связь углерод — магний. Метал л органические соединения включены в эту главу для того, чтобы дать полный обзор использования алкилгалогенидов как субстратов в реакциях замещения, элиминирования и получения соединений, содержащих связь металл — углерод. [c.214]


    Хорошо знакомый механизм (3-элиминирования галогеноводородов под действием основания показан на схеме (137). Как и можно ожидать, во всех этих реакциях очень важную роль играет природа уходящей группы. Одним из наиболее горячо обсуждаемых вопросов, связанных с изучением механизмов реакций в органической химии, является объяснение старых эмпирических правил, предсказывающих структуру олефинов, образующихся при реакции элиминирования. Согласно правилу Зайцева, которое относится к реакциям алкилгалогенидов, элиминирование протекает таким образом, что образуется олефин с наибольшим числом алкильных групп при двойной связи (наиболее термодинамически устойчивый изомер). Напротив, правило Гофмана, которое относится к отщеплению алкиламмониевых ионов, гласит, что [c.673]

    Поэтому неудивительно, что реакции 1-элиминирования не играют заметной роли в органическом синтезе. Например, для получения алкенов и алкинов предпочтение следует отдать процессам 2-элиминирования. [c.192]

    К реакциям деструкции нитрилов, в результате которых полностью сохраняется исходный углеродный скелет молекулы, можно отнести реакции термического расщепления Р -амино-, р-галоген-, р-окси-, р-алкокси- и других р-замещенных пропионитрилов с получением производных акрилонитрила . Предполагают, что э Ги реакции, как и другие реакции р-элиминирования, протекают по механизму внутримолекулярного отщепления (Е ) в циклическом переходном состоянии или по радикальному механизму . р-Элими-нирование р-замещенных пропионитрилов ускоряется под действием неорганических и органических оснований, а также в присутствии кислот . [c.410]

    При согласованных электронных переносах, когда все связи образуются и разрываются одновременно, увеличение и уменьшение электронной плотности происходит согласованно. Циклическими электронными переносами можно объяснить характер протекания ряда органических реакций — присоединения, элиминирования и замещения для большого числа разнообразных органических и металлоорганических соединений [264, 265]. [c.114]

    Электронные механизмы реакций органических соединений. Важнейшими типами химических реакций, известных задолго до возникновения электронных представлений, являются реакции 1) замещения 2) присоединения и 3) отщепления (элиминирования). Электронные представления не только дали возможность составить более точное представление о сущности этих реакций, но и позволили провести дальнейшую более детальную классификацию с учетом электронных механизмов, которые, как оказалось, внутри каждой названной группы реакций могут быть различными. [c.46]


    По-видимому, наиболее вероятный путь генерирования карбеновых комплексов в реальных системах обеспечивают реакции распада органических соединений переходных металлов, возникающих при взаимодействии компонентов катализатора. Это могут быть реакции а-элиминирования гидрида [91, 102]  [c.148]

    Настоящая книга представляет собой учебник для студентов, уже в какой-то мере знакомых с основами органической химии. Обширный материал органической химии рассмотрен автором с точки зрения свойств и поведения отдельных связей, например С — С, С = С, С — О, С — N, С — Зит. д., в различном окружении, т. е. в молекулах различных типов. Такой подход оказался весьма плодотворным и позволил по-новому взглянуть даже на хорошо известные факты. В этом смысле знакомство с книгой будет полезно не только изучающим органическую химию, но и специалистам. Особую ценность представляет первая часть книги (гл. 1—11), в которой излагаются квантовомеханические представления о природе химической связи, рассматриваются физико-химические свойства органических соединений и даются основы физико-химических методов (ИК-, УФ- и ЯМР-спектроскопия, динольные моменты, масс-спектрометрия). Автор удачно расположил непосредственно после описания различных типов химических связей главу по стереохимии органических молекул, в которой подробно и на интересных примерах рассматриваются все виды изомерии. Представления о статических и динамических эффектах в органических молекулах излагаются с позиций английской школы К. Ингольда и широко используются автором при разборе различных типов механизмов органических реакций. Все реакции разбиты на гомоли-тические и гетеролитические (нуклеофильные и электрофильные) и включают реакции присоединения, элиминирования и замещения. Из реакций последнего типа рассматривается нуклеофильное замещение у атома углерода в раз- [c.5]

    Мы ограничимся здесь только кругом реакций Отщепления, в которых уходящие группы связаны с углеродными атомами. По положению уходящих групп реакции элиминирования разделяются на реакции, при которых обе уходящие группы связаны с одним и тем же атомом углерода (а-элиминирование), с соседними (1,2) атомами углерода (р-элиминирование), с атомами углерода, разделенными одним или несколькими атомами углерода (или других элементов). В результате получаются различные продукты реакции. а-Элиминирование приводит к возникновению карбенов. Процессы р-элиминирования дают начало разнообразнейшим ненасыщенным соединениям. Отщепление групп от атомов углерода, расположенных относительно друг друга в у-, б- и более удаленных положениях, может привести либо к полиненасыщенным соединениям, либо к циклам. Реакции элиминирования широко используются в синтетической органической химии прежде всего для получения ненасыщенных и циклических соединений. [c.275]

    При дальнейшем изложении вопроса предполагается, что приводимые примеры следует рассматривать исходя из их фотохимической общности. Хотя для проведения сравнений существует незначительный простор, следует учитывать, что число основных классов органических соединений, к которым относятся гербициды, также невелико. Тем не менее известны реакции, характерные для большинства гербицидных соединений к ним можно отнести замещение атомов хлора в ароматических ядрах на атом водорода или гидроксильную группу, реакции р-элиминирования у гетероатомов и др. [c.327]

    Наиболее простой механизм МФК в присутствии сильных щелочей (например, механизмы Н/В-обмена и изомеризации), по всей видимости, включают экстракцию гидроксида. Многие другие механизмы глубоко не изучены. В случае МФК механизмы могут сильно изменяться в зависимости от характера субстрата и условий реакции. Так, например, р-элиминирование может проходить межфазно, если катализатор облегчает стадию депротонирования. В то же время, если в органической фазе присутствуют малые количества ионов гидроксида четвертичного аммония, то и депротонирование будет осуществляться в этой же фазе. Однако известен еще и третий механизм. Он наблюдается в отсутствие оснований при повышенных температурах. В неполярных средах относительно несольватированные ионы галогенидов ведут себя как основания (см. гл. 1) на-лример, пентахлорэтан дегидрохлорируется галогенидами аммония в условиях запатентованного промышленного процесса  [c.64]

    Маршрут а Экстракция ОН в органическую фазу с последующим элиминированием требует молярного количества катализатора в паре с первоначальным противоионом, более гидрофильным, чем гидроксил. Эта реакция легко проходит при низких температурах. Не очень подходит для этой цели молярное количество тритона В, не полностью растворенного в толуоле или В аналогичном растворителе, поскольку образующийся га-логенид более растворим, чем гидроксид. [c.243]

    Дополнительным подтверждением возможности такого маршрута является тот факт, что элиминирование может протекать и без щелочи с выделением газообразного НС1. Реальность существования R4-N+HX2 в органических средах обсуждалась в. разд. 3.2. В присутствии оснований R4N+HX2 нейтрализуется на поверхности раздела фаз, что сдвигает равновесие реакции элиминирования — присоединения и увеличивает общее время реакции. Ниже приведены типичные экспериментальные методики. [c.243]


    Помимо реакций нуклеофильного замещения возможны реакции, в которых от молекулы органического соединения отщепляются, также говорят элиминируют, атомы или группы атомов. Такие реакции называются реакциями отщеплении или элиминирования. При этом в исходной молекуле образуются новые о- и Л-связи. Отщепляющиеся фрагменты называются уходящими группами. [c.230]

    Важнейшим фактором, определяющим сложность и многообразие процессов электросинтеза органических веществ, безусловно является наличие в суммарном процессе неэлектрохимических стадий. Синтезируемые в результате электронного переноса нестабильные промежуточные продукты — свободные радикалы и ион-радикалы, карбанионы и ионы карбония, — как правило, обладают высокой реакционной способностью и вступают в разнообразные химические реакции, которые в свою очередь могут состоять из нескольких стадий. К их числу относятся реакции протонирования и депротонирования, димеризации, полимеризации, сочетания, конденсации, гидратации и дегидратации, элиминирования отдельных групп, замыкания и размыкания циклов, изомеризации и другие. Часто имеет место химическое взаимо- [c.189]

    Если многоатомная молекула распадается с образованием двух молекул, то такой распад в органической химии называют реакцией элиминирования (отщепления). Например  [c.15]

    В т. 4 рассматриваются реакции элиминирования, окисления и восстановления, а также перегруппировки органических соединений. [c.4]

    Как известно, окислением называют реакции, связанные с потерей атомом (или молекулой) электронов. Достаточно легко установить происходящие при этом изменения в состоянии окисления реагирующих партнеров для чисто ионных реакций. Однако для превращений ковалентных органических соединений понятия окисление или восстановление далеко не всегда кажутся столь же очевидными. Действительно, если речь идет об окислении первичного спирта в карбоновую кислоту (или обратном процессе), об окислении алкенов в эпоксиды или их превращении в алканы, то ясно, что это все — типичные окислительно-восстановительные реакции. Но уже классификация в тех же терминах таких реакций присоединения по двойной связи, как гидратация или бромирование, и обратных им реакций элиминирования не кажется столь же определенной. Тем не менее и по отношению к подобного рода реакциям можно уверенно использовать понятия окисления и восстановления, если опираться на определенные формальные критерии и принять за начало отсчета степень окисления углерода в алканах (уровень окисления 0). [c.132]

    В органической химии в соответствии с общим определением реакциями восстановления принято называть реакции, протекающие с уменьшением суммарной степени окисления атомов углерода или гетероатомов реакционного центра субстрата. Органические соединения восстанавливаются в процессах присоединения по кратным связям водорода, металлов, гидридов металлов и гидридов электроположительных металлоидов (бора, кремния, фосфора), замещения электроотрицательного гетероатома, гетероатомной или углеродной группировки на атом водорода или металла, элиминирования электроотрицательных атомов или гетероатомных групп, связанных с атомами реакционного центра через электроотрицательные атомы, и сочетания с предшествующим (или одновременным) разрывом связей между атомами углерода или гетероатомами и атомами более электроотрицательных элементов. Отдельные примеры таких реакций приведены ниже. [c.10]

    Реакции элими и >0вя. ия, катализ и луем ы е основаниями. Выше рассматривались карбены. Образование этих промежуточных форм нз органических галоидпроизводных в присутствии основания является примером а-элиминировапия, т. е. реакции, при которой галоид и водород отщепляются от одного углеродного атома. Здесь будут рассмотрены реакции Р-элиминирования. В реакциях этого типа отщепляются два атома или две группы, находящиеся при смежных углеродных атомах, и между этими атомами образуется двойная связь. Предложены три основных г.юханизма таких реакций. Механизм Ei предполагает ступенчатое отщепление НХ от R HoX (где X — галоид) через промежуточное образование карбоний-иона  [c.257]

    Реакция должна иметь нулевой порядок по субстрату отклонения от него будут вызваны конкуренцией между анионом реагента и уходящим анионом за катион катализатора Q+. Такая версия была подтверждена в дальнейшем низким значением энергии активации реакции щелочного элиминирования (35,6 кДж/моль), влиянием скорости перемешивания на скорость реакции, нелинейной зависимостью ее от концентрации катализатора, что говорит о влиянии диффузии на лимитирующую стадию [99]. Необходимость достижения некоторой равновесной концентрации Q+OH- в органической фазе в начале реакции подтверждается наличием индукционного периода. Влияет на лимитирующую стадию и природа ониевой соли. [c.37]

    Наиболее хорошо изучены реакции обмена, элиминирование ОК-групны и присоединение к кратным связям, которые в настоящее время нашли широкое применение в органическом синтезе. Значительно менее исследованы реакции конденсации. Очень мало известно о перегруппировках ацеталей. [c.138]

    В заключение следует скзать, что в настоящей статье мы ставили задачей изложить и кратко обсудить основной материал, имеющийся по одному из сложнейших вопросов органической химии - по реакциям бимолекулярного элиминирования с достаточным для знакомства с проблемой в целом, но не исчерпывающим объемом библиографического материала. [c.177]

    Статья посвящена современным представлениям о механизмах и пространственном течении реакций Э-элиминирования в ряду галогенопроизводных углеводородов, четвертичных аммониевых производных и сложных эрров. В обзоре приводится большое количество работ виднейших современных ученых, работающих в названной области органической химии (Ингольд, Уинстайн, Янг, Паркер, Неницес-ку и др.). Приведены данные по основным обсуждаемым в настоящее время механизмам отщепления согласованный Е2-механизм, Е1сВ-, [c.296]

    В монографии сформулирован общий подход к прогнозированию каталитического действия твердых веществ в реакциях органических соединений серы и показана его плодотворность для подбора катализаторов различных реакций. Впервые систематизированы данные по адсорбции соединений серы и их влиянию на свойства твердых катализаторов, определены границы использования металлов, окислов и сульфидов металлов при катализе реакций сернистых соединений. Изложен обширный экспериментальный материал о закономерностях каталитических превращений тиоэфиров, сульфо-ксидов, сульфонов, тиофенов (гидрирование, гидрогенолиз, дегидрирование, циклизация, дезалкилироваиие, элиминирование, изомеризация, окисление). [c.2]

    Этот тип реакции впервые был открыт Херриотом и Пик-кером [3, 23]. Эти же авторы исследовали реакцию между вторичными алкилбромидами, водным NaOH и межфазными катализаторами. Основная часть субстрата (81—94%) подвергается элиминированию, а остаток гидролизуется. Такое соотношение характерно для реакций в органических растворителях в отличие от реакций в водных растворах. [c.56]

    Хотя такая система сама по себе полезна, она требует запоми-чания индивидуальных названий кроме того, многие реакции не имеют таких названий. Комиссия по физической органической химии ИЮПАК начала разработку системы наименований не реакций, а превращений (реакция включает все реагенты, а превращение — лишь субстрат и продукт без реагентов). Преимущества систематического метода очевидны. Если система известна, то не требуется запоминания название можно вывести непосредственно по уравнению реакции. Построенная на сегодняшний день система (многие превращения еще не рассматривались) предусматривает названия для прямых превращений трех типов замещения, присоединения и элиминирования. Здесь будут приведены лишь основные правила, которых, однако, достаточно, чтобы назвать большинство превращений [2]. Полные правила предусматривают несколько различающиеся названия при написании и в устной речи, а также для индексирования. Названия для индексирования здесь не приводятся. [c.7]

    Поляризация связей, в том числе сопровождающаяся химическими реакциями, происходит не только в молекулах, окружающих ион, но также, и в первую очередь, в самих органических ионах. Так, сравнительно устойчивый ион, т >ед -бутил-катиок (26), в присутствии даже слабых оснований легко теряет протон с образованием изобутилена (27) (элиминирование, схема 2.14). При этом электронная пара, образующая связь С-Н, целиком перетягивается к положительному заряду, происходит выброс протона, уносящего положительный заряд, и образуется связь С=С. [c.92]

    Другое важное изогипсическос препращенис аллильных производных — элиминирование группы Н-Х, приводящее к 1,3-диенам. Помимо того, что многие представители этой группы соединений практически важны как мономеры, 1,3-диены занимают особое место в органическом синтезе как субстраты для реакции Дильса—А1ьдера, Один из самых обычных путей синтеза этих производных основан на последовательности превращений, а ю-чающих стадию реакции Гриньяра карбонильных соединений с винильными производными с последующим элиминированием воды (схема 2.55) (иногда предпочтительнее сначала превратить аллильный спирт в соответствующее ацетоксипроизводное). [c.142]

    В начальный период развития органического синтеза было естественно выстраивать синтетическую цепочку, используя в качестве исходного соединения то или иное вещество, вьщеляемое из природных источников. Именно на этой основе в 1911 г. Вильштеттером [21а] бьи осуществлен синтез цикло-октатетраена (137). Исходным соединением для этого синтеза послужил алкалоид псевдопельтьерин (138), вьщеленный из корней гранатового дерева. Это соединение уже содержало 8-членный цикл, и поэтому представлялось наиболее естественным предшественником для получения 137. Задача Виль-штеттера состояла в преобразование функциональности, имеющейся в алкалоиде 138, в систему четырех двойных связей целевого продукта 137. Первая двойная связь была создана в результате восстановления кетогруппы с последующей дегидратацией, а построение остальньтх двойных связей было осуществлено с помощью последовательности таких простых реакций, как исчерпывающее метилирование, элиминирование по Гофману, бромирова-ние и т. д., как это показано на схсме 2.65. Все стадии этого 10-стадийного синтеза суть трансформации функциональных групп, две из которых неизогипсические (восстановление карбонила и присоединение брома), а остальные — изогипсические. [c.155]

    В органической химии, однако, по традиции эти широко распро-I страненные процессы связывают с присоединением водорода к мо-I Лекуле органического соединения. Если присоединение водорода приводит к частичному или полному насыщению кратных связей, I то такие реакции называют гидрированием, а удаление кислорода из органических молекул (элиминирование) — собственно восста-Щ новлением. Тип реакций, в которых имеет место расщепление простых связей водородом, называют гидрогенолизом. [c.199]

    Продукт реакции отделяют от воды (которая имелась в растворителе и образовалась в результате побочны.х реакций), водный слой экстрагмуюг эфиром и объединенные органические фазы сушат сульфатом иатрия. Поели отгонки эфнра продукт элиминирования фракционируют. [c.316]

    Примеры элиминирования эфиров ксантогеновой кислоты в случае си.чьно разветвленных вторничных спиртов типа метил-трет-бу-тилка11оинолов Нэс Г. Р. В сб. Органические реакции. Сб. 12. Пер. f акгл. — М. Мир, 1965. [c.323]


Смотреть страницы где упоминается термин Реакции органические элиминирования: [c.569]    [c.65]    [c.380]    [c.114]    [c.138]    [c.103]    [c.200]    [c.193]    [c.7]    [c.5]    [c.176]    [c.110]    [c.4]   
Химия Справочник (2000) -- [ c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Органические реакции

Элиминирование Элиминирование

Элиминирования реакции



© 2025 chem21.info Реклама на сайте