Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества поливинилхлорид

    Поливинилхлорид и материалы на его основе при обычных температурах устойчивы к воде [226, 227], кислотам, щелочам, окислителям и большому числу органических веществ [228] в некоторых из этих органических веществ поливинилхлорид растворяется (см. табл. 2). [c.369]

    Получается высокомолекулярное вещество — поливинилхлорид с молекулярной массой, достигающей 90000. Так как молекулярная масса мономера (хлористого винила) равна 62,5, то, следовательно, при молекулярной массе 90000 количество мономерных звеньев ( ) приближается к 1500. [c.170]


    Приведенная схема очистки сточных вод, с одной стороны, позволяет выделить биохимически неокисляющиеся вещества (поливинилхлорид, эмульгаторы и адсорбированные на поливинилхлориде хлористый винил, инициатор и продукты его распада), которые по заключению ВНИИ ВОДГЕО не только сами биологически не окисляются, но и тормозят развитие микроорганизмов, ведущих окисление других соединений, а с другой стороны, создает все благоприятные условия для биохимической доочистки сточных вод. [c.115]

    Кроме низкомолекулярных веществ поливинилхлорид может быть пластифицирован олигомерами и даже полимерами, доста- [c.485]

    Эта схема очистки сточных вод, с одной стороны, позволяет выделить биологически неокисляющиеся вещества (поливинилхлорид, эмульгаторы и адсорбированные на поливинилхлориде хлористый винил, инициатор и продукты его распада), которые не только сами биохимически не окисляются, но и тормозят развитие микроорганизмов, окисляющих другие соединения, а с другой стороны — создает все благоприятные условия для биохимической доочистки сточных вод. Кроме того, схема позволяет выделить из сточных вод поливинилхлорид, количество которого в отдельных случаях может достигать нескольких граммов в 1 л. [c.73]

    Взаимная растворимость полимеров. Все более широкое применение в технике начинают находить смеси полимеров, которые могут обладать свойствами, отсутствующими у отдельных компонентов. Особый интерес с практической точки зрения представляет сочетание жестких высокомолекулярных веществ (поливинилхлорид, нитроцеллюлоза) с мягкими, каучукоподобными (например, сополимер бутадиена с акрилонитрилом), выполняющими роль своеобразных пластификаторов и свободными от таких недостатков низкомолекулярных пластификаторов, как резкое снижение прочности полимерной композиции, способность мигрировать на поверхность изделий, летучесть и т. д. [c.390]

    Если в молекуле этилена один или несколько атомов водорода заменить на какой-либо другой и затем получить полимер, то можно синтезировать вещества с самыми разнообразными свойствами. Среди таких полимеров наиболее распространены поливинилхлорид, полиакрилонитрил и полистирол. Они получаются в результате следующих реакций  [c.220]

    Материалы, использование которых в контакте с жидким кислородом и в местах возможных его утечек запрещается. К таким материалам относится большинство из испытанных — силиконовые жидкости и смазки, найлоновые проставки, консервирующие и защищающие от коррозии вещества и бумаги, жидкость для маркировки болтов, щиты из поливинилхлорида, каучук, резиновая пленка, стеклоткань, пропитанная различными веществами, и многие другие. [c.58]


    Известны вспомогательные вещества, состоящие из частиц полимеров неправильной формы, например из частиц поливинилхлорида [371], в частности с добавкой минерального наполнителя [372]. Вспомогательные вещества, состоящие из частиц полимеров с магнитными свойствами, получают полимеризацией соответствующих мономеров в присутствии тонкодисперсных ферромагнитных материалов [373]. Частицы этих полимеров имеют различную форму и близкие размеры. Магнитные вспомогательные вещества регенерируют в переменном магнитном поле. [c.349]

    Сбросы из центрифуги происходят непрерывно. В центрифуге из шлама выделяются твердые вещества, содержащие 75—77% поливинилхлорида. В центрифуге получается некоторое количество винилхлорида и поливинилхлорида. Выбросы в атмосферу содержат водяной пар, воздух, мономер винилхлорида и поливинилхлорид. [c.269]

    Винипласт получают термической пластикацией смеси поливинилхлорида со стабилизаторами и смазывающими веществами с добавкой красителя или пигмента и без них путем вальцевания и экструзии. Производство листового винипласта методом [c.29]

    Каталитическое окисление нафталина воздухом или воздухом, обогащенным кислородом, широко используют для производства фталевого ангидрида. Фталевый ангидрид является важным полупродуктом в производстве алкидных и полиэфирных смол, пластификаторов для поливинилхлорида и других полимеров, в синтезе красителей. Кроме того, с применением фталевого ангидрида можно получать лекарственные вещества, инсектициды, ускорители вулканизации каучуков, присадки к смазочным маслам, добавки к реактивным топливам и т. д. [c.176]

    Только в 50-х годах были разработаны и реализованы в крупном промышленном масштабе процессы производства таких продуктов нефтехимического синтеза, как полиэтилен низкого давления (1953 г.), поликарбонатные пластмассы (1953 г.), полипропилен (1954 г.), полиэфирные волокна (1955 г.), полиформальдегидные смолы (1959 г.), поливинилхлорид, различные типы синтетического каучука, поверхностно-активные вещества и другие. [c.5]

    При сочетании поливинилхлорида с пластифицирующими веществами, например с высококипящими сложными эфирами, получаются высокоэластичные материалы, которые находят очень широкое применение в производстве электроизоляционных изделий, защитных пленок, искусственной кожи, резиноподобных изделий. [c.268]

    Для кристаллических веществ, содержащих квадрупольные-ядра, можно наблюдать четкий сигнал ЯКР. Если в исследуемом образце квадрупольные ядра занимают химически или кристаллографически не эквивалентные положения, то спектр ЯКР будег состоять из двух или более сигналов. Так, в случае поливинилхлорида проявляются два сигнала от ядер хлора на частотах 37,. 25 и 38,04 МГц. [c.277]

    Синтез винилхлорида - исходного вещества для получения полимера поливинилхлорида и других полимеров. [c.336]

    Синтетические полимеры. К синтетическим полимерам, в обычных условиях не обладающим высокой эластичностью, относятся полиэтилен, поливинилхлорид, поливинилиденхлорид, поливинилацетат, полиметилакрилат, полиметилметакри-лат, полистирол и ряд других широко известных продуктов, идущих для изготовления изделий из пластмасс, плёнок и т. д. Эти вещества являются термопластичными, поскольку они могут размягчаться и формоваться при нагревании, К синтетическим полимерам относятся также термореактивные смолы, текучие в исходном состоянии и способные при нагревании в результате химических реакций необратимо отвердевать. К таким смолам следует отнести феноло-форм-альдегидные и мочевино-формальдегидные смолы, применяемые в технике уже несколько десятилетий [c.420]

    Равновесность и обратимость растворов полимеров были также доказаны В. А. Каргиным, 3. А. Роговиным, А. А. Тагер и другими исследователями на опытах с бензилцеллюлозой, нитратом целлюлозы, поливинилхлоридом, желатином и другими высокомолекулярными веществами. Эти исследователи получали насыщенные растворы полимеров в плохих растворителях различными путями. Опыты показали, что если равновесие (расслоение раствора на две фазы или достижение предела растворения) достигалось при одной и той же температуре и давлении, то всегда получались растворы одинаковой концентрации. Для перечисленных высокомолекулярных веществ были получены диаграммы состояния с верхней критической температурой растворения. Однако имеются данные, что для растворов метилцеллюлозы и этилцеллюлозы в воде получаются диаграммы с нижней критической температурой. [c.435]

    Из сказанного можно сделать важный вывод, чго высокомолекулярные вещества с гибкими макромолекулами должны всегда лучше растворяться, чем с жесткими, поскольку первые могут располагаться в растворе значительно большим числом способов. Кроме того, следует помнить, что у жестких макромолекул, обычно ориентированных более или менее параллельно, энергия взаимодействия между отдельными молекулярными цепочками очень велика, и такие цепи трудно оторвать друг от друга. Этими обстоятельствами и можно объяснить обычно весьма ограниченное число растворителей для высокомолекулярных веществ с жесткими цепями (целлюлоза, поливинилхлорид, полиамиды). [c.441]


    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]

    Термический распад некоторых полимеров с функциональными группами в виде боковых подвесков приводит к выделению низкомолекулярных веществ, образованию двойных связей в цепи без распада цепи при чисто термическом воздействии. Так идет, например, распад поливинилхлорида (ПВХ)  [c.236]

    Пенопласты (поропласты) — высокопористые материалы с малым объемным весом, достигающим у некоторых представителей 10 кг м . Их готовят из различных термопластичных полимеров (нз поливинилхлорида, полистирола, аминопластов и др.). Наиболее простой способ изготовления — введение в смолу веществ, способных образовывать газы — порофоры. Например, таким порофором является карбонат аммония, который при нагревании разлагается с получением газообразных продуктов  [c.256]

    Хорошо совмещаться с поливинилхлоридом, т. е. при смешении пластификаторов с поливинилхлоридной смолой (с помощью смесительного оборудования) должна получаться вполне однородная пластическая масса. Для этого применяемые для пластифицирования вещества должны обладать достаточной полярностью, так как процесс совмещения обусловливается образованием сольватирующей оболочки из полярных молекул пластификатора вокруг полярных групп полимера. [c.125]

    Распределительная хроматография. Сорбенты-носители — различные гидрофильные (силикагель, целлюлоза и др.) или гидрофобные (тефлон, поливинилхлорид, полиэтилен и др.) порошкообразные вещества, способные удерживать на своей поверхности соответственно водную или органическую фазу разделение компонентов смеси обусловлено различием коэффициентов распределения их между двумя жидкими фазами, из которых одна (вода или органическая, несмешивающаяся с водой, жидкость) является неподвижной, удерживаемой частицами сорбента-носи-теля. [c.8]

    Для работы удобны пленочные мембраны толщиной 1 мм. Чтобы получить такую мембрану в чашке Петри диаметром 10 см требуется 2 г поливинилхлорида и 6 г пластификатора. Концентрации электродноактивных веществ рассчитывают на 1000 г пластификатора. [c.579]

    Кар боксилированный дифенилолпропан может служить исходным веществом для получения полиамидов и эпоксидных полимеров его эфиры, в частности 2,2-бис-(3 -карбобутокси-4 -оксифенил)-про-пан, рекомендуются в качестве пластификаторов для поливинилхлорида . [c.56]

    При димернзации и полимеризации пропилена и бутилена образуются олефины С , Сэ и С12, которые, взаимодействуя с СО и На, дают высококипящие спирты и органические кислоты. Спирты и кислоты используют в качестве пластификаторов при изготовлении поливинилхлорида. Оксосппрты применяют также для получения моющих веществ. [c.78]

    Исследовано [88, 89] замещение хлора на азидную группу в поливинилхлориде (ПВХ). Реакцию проводили в гетерогенной смеси порошкообразного ПВХ и водного раствора азида натрия в присутствии четвертичных аммониевых солей. Тетрабутилам-монийхлорид и тетрабутиламмонийбромид как катализаторы были лучше, чем более обычные поверхностноактивные вещества [88]. Тетрабутиламмонийхлорид был также наилучшим катализатором и при проведении реа,кции в растворе ТГФ, в котором ПВХ растворим, а натриевая соль нерастворима [88]. [c.140]

    Так, введены в эксплуатацию установка мокрого пылеулавливания в цехе сложных удобрений, резко сократившая выброс пыли установки каталитической очистки выхлопных газов, обеспечивающие уменьшение выброса окислов азота, заменены рукавные фильтры на мокрые скрубберы в отделении сушки поливинилхлорида сжигание отходящих и ретурных газов аммиачного производства, значительно уменьшившее выброс аммиака и окиси углерода в атмосферу реконструирована схема очисгки выхлопных газов цеха полиэфиракрилатов реконструирована вентиляционная система, устранены пропуски на оборудовании организованы местные отсосы с воронок канализации органических стоков и пробоотборников винилхлорида и винилацетата заменены шнеки подачи сополимеров на пневмотранспорт. Все это позволило в несколько раз снизить концентрацию вредных веществ в воздухе производственных помещений. [c.128]

    В последние годы зарубежная промышленность значительно расширила производство фильтрующих материалов мембранного типа. У нас в стране мембранные фильтры применяют только в лабораторной практике для очистки небольших количеств топлив и масел. Опыт таких фирм, как Millipore (США), Sartorius (ФРГ) и Sinpor (ЧССР) показывает, что возможно промышленное применение мембранных фильтрующих материалов на основе нитрата и ацетата целлюлозы, полиамида, поливинилхлорида, тефлона и т.п. Ввиду того что мембранные материалы можно создать с весьма малым размером пор, эти материалы не только эффективны при очистке масла от механических частиц, но способны задерживать также коллоидные вещества, микроорганизмы, частички латекса и даже крупные молекулы полимеров, резины и т. п. [c.223]

    Из других факторов, ограничивающих целесообразность использования барабанных вакуум-фильтров, следует отметить высокую скорость осаждения твердых частиц суспензии, при которой происходит интенсивное ее сгущение на дне корыта, а также малую скорость образования осадка при работе с разбавленными или тонкодисперсными суспензиями, не позволяющими получить осадок толщиной >5 мм за время прохождения участка фильтровальной ткани через зону I (зону фильтрования). Фильтры, выпускаемые отечественным машиностроением, преимущественно оборудованы ножевым устройством для съема осадка. Все детали барабанного вакуум-фильтра ВШП1-1, соприкасающиеся с перерабатываемым продуктом, изготовлены из поливинилхлорида или покрыты кислотостойкой резиной. Фильтр пригоден для применения в различных катализаторных производствах с относительно невысокой мощностью. При поверхности фильтрования 1 м производительность фильтра по фильтрату составляет 100—4000 л/(м2-ч), а по сухому веществу 50—100 кг/(м -ч) влажность осадка равна 40—80%. [c.221]

    Предложены методы отверждения отработанных масел. Получаемые продукты в зависимости от способа приготовления могут быть использованы в самых различных областях. Для получения покрытий, наполнителей и изоляционных материалов масло смешивают с поливинилхлоридом и пластификатором (диоктилфта-латом) при необходимости добавляют замедлитель горения трикрезилфосфат и стабилизатор. Смесь гомогенизируют при нагревании с последующим охлаждением. Полученная масса эластична и хорошо формуется. Запатентован ряд отвердителей отработанных нефтяных масел. Как правило, это композиции веществ с различными функциями дибромтетрафторэтан, низкомолекулярный полифторхлорэтилен, водные растворы щелочей, бикарбонаты натрия и калия, соли фосфорных кислот, воски, высшие жирные кислоты, мыла, сложные ароматические галогенсодержащие продукты. [c.314]

    Высоковязкие жидкости невозможно залить в форму. Их приходится впрыскивать или нагнетать в нее под высоким давлением. Существует, однако, метод переработки, при котором в форму заливают раствор полимера в мономере или полимер, диспергированный в пластификаторе. Все эти вещества обладают низкой вязкостью, удобной для заполнения формы методом заливки. Такие мономеры, как стирол и акрил, а также растворы полимеров в мономере часто перерабатывают, заливая их в формы. Широко распространен метод переработки сильно пластифицированного эластичного поливинилхлорида (пластизоля) методом заливки. При нагреве ПВХ набухает, сшивается и превращается в резиноподобный материал. [c.24]

    На рис. 2-31 приведены результаты измерения концентрации парамагнитных центров (ПМЦ) в зависимости от температуры термообработки образцов пека из хорошо графитирующих-ся высоко- и среднетемпературных пеков, поливинилхлорида и неграфитирующихся соединений фурфуролфенолоформальдегидной смолы (ФФФС), анилинфенолоформальдегидной смолы (АФФС), вискозного волокна. В неграфитирующихся веществах во всем исследованном интервале температур наблюдается постоянный рост концентрации парамагнитных центров. [c.89]

    Гетерогенные мембранные электроды. Не всегда возможно получение мембраны в гомогенном состоянии. Значительно доступнее приготовление твердого гетерогенного мембранного электрода внесением тонкодиспергированного вещества с заданными свойствами в инертную мембрану из полимерного материала (матрицу). Матрица должна обладать механической прочт-ностью, быть химически инертной. В качестве связующего материала используются парафин, коллодий, поливинилхлорид (ПВХ), полистирол, полиэтилен, силиконовый каучук. Последний обладает хорошими гидрофобными свойствами, эластичен, плохо набухает в водных растворах. [c.54]

    При наложении переменного поля резонансной частоты начинаются переходы между уровнями, что ведет к поглощению энергии переменного поля. Это явление и называется ядерным квадрупольным резонансом (ЯКР). В случае ЯКР имеет место прецессия отдельных ядер (а не электронов), способных вращаться в поле своей электронной оболочки (эллипсоидные ядра). В отличие от сферических атомов, у которых заряды распределены равномерно, продолговатые ядра (характерные, например, для галогенов, в частности хлора) обладают квадрупольным электрическим моментом. Для веществ с такими ядрами можно наблюдать четкую линию квадрупольиого резонанса. Чувствительность метода ЯКР настолько велика, что можно фиксировать резонансные частоты атомов, обладающих разными химическими свойствами (так, в случае поливинилхлорида для них получаются значения частот 37,25 и 38,04 МГц). [c.230]

    Набухание далеко не всегда кончается растворением. Очень часто после достижения известной степени набухания процесс прекращается. Одна из причин такого явления может заключаться в том, что высоком,олекулярное вещество и растворитель способны смешиваться ограниченно. Поэтому в результате набухания в системе образуются две фазы — насыщенный раствор полимера в растворителе (собственно раствор) и насыщенный раствор растворителя в полимере (гель, студень). Такое ограниченное набухание носит равновесный характер, т. е. объем набухшего до предела высокомолекулярного вещестна неограниченно долго остается неизменным, если только в системе не произойдут химические изменения. Примерами набухания, обусловленного ограниченным растворением, являются набухание поливинилхлорида в ацетдне и полихлоропрена в бензоле. Следует отметить, что ограниченное набухание, причина которого кроется в ограниченном растворении, очень часто при изменении условий опыта переходит в неограниченное. Так, желатин и агар, набухающие ограниченно в холодной воде, в теплой воде набухают неограниченно. [c.445]

    Применение. Хлор в больших количествах ис1юльзуется для производства разнообразных хлорсодержащих продуктов, в том числе хлорорганических веществ растворителей, мономеров и полимеров, красителей, ядохимикатов и др. Получение хлора (и попутно NaOH)-одно из важнейших химических производств. Из хлорсодержащих полимеров получают поливинилхлорид [c.469]

    При стабилизации поливинилхлорида надо учитывать, что он отщепляет хлористый водород уже при обычных условиях эксплуатации. Этот процесс ускоряется под действием солнечного света, нагревания и сопровождается появлением хрупкости и изменением цвета у изделий из поливинилхлорида. Переработка поливинилхлорида осуществляется при температурах 170—190°С, что требует присутствия термостабилизаторов. Процесс термодеструкции осложняется еще и окислительными реакциями. Поэтому в качестве стабилизаторов в этом случае используют смеси различных веществ (5—6 компонентов) стеараты свинца или кадмия, основные соединения (для поглощения НС1), бензофенолы (защита от ультрафиолетовых лучей), фосфиты (разложение пероксидов). Кроме того, могут вводиться еще вещества, связывающие продук ты реакции указанных типов стабилизаторов с НС1 и другими веществами. [c.273]

    Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностноактивные вещества. Достоинство способа — легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток — необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливиннлацетата, полиметилакрила-та и др. [c.355]

    Набухание далеко не всегда кончается растворением полимера. Очень часто после достижения определенной степени набухания процесс прекращается из-за того, что высокомолекулярное вещество ограниченно растворяется в данном растворителе. Вследствие этого в конце процесса набухания образуется две фазы — насыщенный раствор полимера в растворителе и насыщенный раствор растворителя в полимере (студень). Такое ограниченное набухание имеет много общего с ограниченным растворением жидкостей. Примерами набухания, обусловленного ограниченным растворением, является набухание поливинилхлорида в ацетоне и полихлоронрена в бензоле. [c.152]


Смотреть страницы где упоминается термин Вещества поливинилхлорид: [c.303]    [c.17]    [c.347]    [c.56]    [c.288]    [c.339]    [c.536]   
Химия окружающей среды (1982) -- [ c.609 ]




ПОИСК





Смотрите так же термины и статьи:

Определение влаги и летучих веществ в поливинилхлориде

Поливинилхлорид



© 2025 chem21.info Реклама на сайте