Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение пропана в этилен

    Увеличение объемов при п проливе газообразных парафиновых углеводородов. Если пропан в процессе пиролиза па 100% превращается в метан и этилен или в пропен и водород, то объем газа при этом увеличивается вдвое. Из 100 л пропана образуется 200 л продуктов реакции. Отсюда следует, что независимо от того, каково удельное значение реакций крекинга и дегидрирования, всегда образуется двойной объем продуктов реакции сравнительно с исходным. Прн 50%-ном превращении пропана из 100 л пропана образуется 150 л продуктов реакции. [c.51]


    Если любой полимер подвергнуть нагреванию, то, начиная с нв- которой температуры, моншо наблюдать различные химические превращения, характерные для процессов разложения органических веществ. Аналитически это можно определить по накоплению различных низкомолекулярных газообразных и жидких продуктов разложения, по уменьшению молекулярного веса или изменению характеристик, с ним связанных. Например, при термической деструкции (пиролизе) полиэтилена, которая с достаточно высокой, скоростью протекает при 400 °С, было идентифицировано, около 20 различных низкомолекулярных продуктов, среди которых этилен, этан, пропилен, пропан, пентены, к-пентан, гексены и т. д. . Это указывает на весьма сложный характер процессов деструкции высокомолекулярных соединений. Важно отметить, что при разложения полиэтилена мономер образуется в незначительном количестве (менее 1% по массе). Подобная картина наблюдается при термической и термоокислительной деструкции большинства виниловых полимеров, простых полиэфиров и т. д, В то же время разложение таких полимеров, как полистирол, полиметилметакрилат и др., протекает с выделением значительных количеств мономера. [c.191]

    Синтезированы и исследованы новые эффективные катализаторы превращения метана в этилен [1] и пропан-бутановой фракции в ароматические углеводороды [2]. Методами рентгеновской дифрактометрии и Рамановской спектроскопии установлено взаимодействие оксида церия с оксидом лантана, приводящее к возникновению новых активных центров активации метана и его превращения в этилен. [c.84]

    Можно утверждать, что в случае радиационного алкилирования изобутана пропиленом большинство имеющихся данных удается объяснить на основе общеизвестной теории радикального механизма. Поэтому в условиях, применявшихся при проведении рассматриваемых работ, не было необходимости предлагать для инициированной облучением реакции механизм, предполагающий образование каких-либо специфических для радиации промежуточных продуктов, например ионов. Однако можно постулировать и протекание ионных цепных процессов в этом случае также достигается соответствие экспериментальным данным. Лучше всего ограничиться утверждением, что имеющиеся данные находятся в полном соответствии с нашедшей общее признание теорией радикальных реакций предполагать протекание каких-либо новых реакций не требуется. Дать окончательный и однозначный ответ на этот вопрос еще невозможно, так как протекание весьма медленной термической реакции затрудняет непосредственное сравнение продуктов, получаемых при одинаковой степени превращения алкена в результате радиационного и чисто термического алкилирования. Однако проводящиеся в лаборатории фирмы Эссо исследования для более реакционноспособной системы пропан — этилен, которые будут рассмотрены ниже, показали, что получаемые продукты весьма сходны, разумеется, если сравнение проводить при одинаковой степени превращения исходного алкена. [c.129]


    В настоящее время в тех местах, где пропан и этан являются доступными, существует тенденция производить этилен из этана, а не из пропана. Дело в том, что при пиролизе этана получается более высокий весовой выход этилена (75—80%), тогда как при пиролизе пропана выход этилена составляет практически всего 50 вес.%. Однако пропан можно пиролизовать до более высокой степени превращения, а выделение этилена из газов пиролиза пропана происходит легче, чем из газов пиролиза этана. [c.121]

    Пропан, этилен Изопентан, н-пен-тан, 2-метилгексан Кварц 450 бар, 500° С, пропан этилен = = 7,0 (об.), 1100 ч" , превращение пропана 72% [156] [c.359]

    Для высокомолекулярных н-парафинов, например гексадекана, по данным 1[9], в качестве первичных продуктов образуются пропилен, н-бутан, бутилены и углеводороды С5—Си. м-Бутан и пропилен практически не претерпевают дальнейших превращений. Найденные экспериментально продукты вторичных реакций (метан, этан, этилен, пропан, изобутан, кокс) являются результатом превращения бутиленов и углеводородов С5—С14. [c.87]

    Состав исходного газа должен находиться за пределами взрываемости смесей этилена с воздухом. Это означает, что концентрация этилена не должна превышать Зоб. %. В некоторых процессах вместо воздуха применяют кислород. Этилен должен быть чистым, так как парафиновые углеводороды, например пропан или этан, могут оказывать вредное влияние на величину степени превращения и на продолжительность срока службы катализатора. Установлено, что при работе с чистым этиленом не имеет смысла добавка веществ, подавляющих реакцию полного сгорания. [c.159]

    Весьма существенным моментом является чрезвычайно высокая избирательность образования 3-метил-1-бутена при алкилировании. В продуктах низкотемпературного алкилирования углеводороды выше Сб обнаружены не были. Кроме нен-тена, в продукте присутствовали только метан, этан, этилен и пропилен. Эти последние соединения типичны для нецепного радиолиза пропана. Следовательно, при низких температурах ацетилен практически полностью взаимодействует с пропаном только по реакции алкилирования. Этот вывод подтверждается и материальным балансом реакции. Значения С для реакций превращения ацетилена составляли 50 при 20. 10 рад/ч и 20 при 70 10 рад/ч. Такие значения радиационного выхода указывают на то, что реакция алкилирования пропана ацетиленом представляет собой процесс с короткой цепью, длина которой при применявшихся интенсивностях облучения лежала в пределах 5—10. В пределах экспериментальных погреш-лостей длина цепи изменялась обратно пропорционально корню квадратному из интенсивности. [c.138]

    Этилен, пропан Изопентан, н-пен-тан, 2-метилгексан Саз(Р04)г продажный проток, 500° С, 450 бар, 2300 ч—. Превращение 75%, выход алкилата 122% [158] [c.94]

    Этан-пропан. Несмотря на то что этилен можно приготовить пиролизом любого углеводородного сырья, этап, пропан, и смеси этих двух компонентов рассматриваются как наиболее приемлемые исходные продукты. Процесс строго термический, так как пе обнаружено катализатора, способного эффективно увеличивать скорость дегидрирования этана или дифференциально воздействовать на две стороны разложения пропана — дегидрирование и деметилирование. Пиролиз ведется при температуре около 730—815 С и под давлением 1,4—2,1 кГ1см время контакта — около 0,7—1,3 сек. Для уменьшения конденсационных реакций и одновременно — подвода тепла в зону реакции добавляют инертный разбавитель, такой как водяной пар. В табл. П-12 приведены типичные продукты подобного превращения. [c.99]

    Этилен (1) Пропилен (II) Изобутилен (III) Этан Пропан Изобутан Ag 300° С, начальное превращение 1 — 33%, II —11%, 111 — 2,4%, активность резко падает во времени [963] [c.1294]

    Кинетика превращения этана [8] изучена при тех же силах тока 32, 75, 125, 175, 225 и 350 ма. Основным продуктом здесь является также ацетилен, кроме него образуются метан, этилен, пропан, пропилен. Наблюдается также образование твердых и смолообразных продуктов. Степень превращения этана в них составляет несколько процентов в опытах с малыми силами тока и достигает 70—80% при больших силах тока и степенях общего превращения 80—90%. [c.24]

    Кинетика превращения метана [8] изучалась также при силе тока 32, 75, 125, 175, 225 и 350 ма. Опыты проведены как при низком (1,2—1,3 мм рт. ст.), так и при более высоком давлении - 3 мм. Основными продуктами превращений метана являются этан, ацетилен, этилен, пропан, пропилен и твердые вещества. На рис. 14 показаны зависимости степеней превращения у метана 2 до различных продуктов от О ЧО 80 120 150 200 13 удельной энергии, получен- [c.29]

    Метан и этан практически не алкилируются. Пропан и высшие углеводороды вступают в реакцию с олефинами, причем легче всего с этиленом, менее охотно с пропиленом и к-бутиленами и труднее всего с изобутиленом. Этот порядок отвечает термодинамической вероятности указанных превращений и повторяет закономерности, установленные для термической полимеризации олефииов. [c.292]

    Важное значение и.меют процессы дегидрогенизации предельных газообразных углеводородов. Этан и пропан могут быть этим путем превращены в этилен и пропилен при. 600—650° С (катализаторами служат окислы тяжелых металлов, осажденные на окиси алюминия) бутан может быть в одну или в две стадии превращен в дивинил  [c.412]


    На тех установках, где пропилен не используют как целевой продукт, часто практикуется рециркуляция его для дальнейшего разложения на этилен. Пропилен более теплостоек, чем пропан, и при времени контакта 0,5 сек. из него получается 30% вес. этилена лишь нри 66%-ном общем превращении. [c.45]

    Изучено [39] влияние добавок алифатических углеводородов на газофазное окисление пропилена в присутствии смешанного катализатора из окислов висмута, молибдена и сурьмы. Экспериментально показано, что этан, этилен и пропан не мешают превращениям пропилена в акролеин. Изобутилен, бутен-1 и цис-бутен-2 тормозят окисление пропилена и сами энергично расходуются по ходу реакции, причем из первого углеводорода С4 об-)азуется метакролеин, а из второго и третьего — бутадиен-1,3. полученные результаты объясняют, [39] с позиции конкурентной адсорбции исходных углеводородов на одних и тех же активных центрах катализатора. [c.21]

    С получена величина энергии активации 42,7—46,7 ккал моль, близкое значение энергии активации (46 ккал моль) найдено в работе [62]. При атмосферном давлении, 460—500° С и малой (= 3,5%) глубине превращения в продуктах крекинга н-бутана найдены метан, этан, этилен, пропилен, пропан, бутен-1, бутен-2 и изобутен, причем выход продуктов не зависит от глубины превращения. Истинный порядок реакции находится между 1 и 2, а экспериментальные результаты одинаково хорошо описываются уравнениями первого и второго порядка с константами скорости соот- [c.82]

    На рис. XI. 10 приведены экспериментально найденные 350 ма) зависимости от удельной энергии степеней превращения у этана в ацетилен, этилен, пропан и пропилен. Как видно, все у проходят с увеличением //о через максимум. Не показанная на рисунке зависимость степени общего превращения этана от удельной энергии выражается двумя кривыми одна для больших и другая для меньших сил тока. Таким образом, функция Д=/( 7/и) не однозначна. [c.299]

    Кинетика превращения этана. Кинетика превращения этана изучена при тех же силах тока 32,75, 125, 175, 225 и 350 ма. Основным продуктом здесь является также ацетилен. Кроме него, образуются метан, этилен, пропан, пропилен, а также твердые и смолообразные [c.282]

    Степень превращения этан.......... этан пропан. .... Выход при однократном прохождении, мол. на 100 мол. превращенной смеси этана и пропана этилен. . . .. ацетилен...... Суммарный выход при полном превращении, мол. на 100 мол. превращенной смеси этана и пропана этилен......... ацетилен. ...... 68.3 90,0 64.3 5,8 71,6 6,5 96.8 96.8 53.4 14.5 55,2 15,0 [c.90]

    Соотношение образующихся в процессе пиролиза этилена и пропилена завпсит от условий процесса. При температуре 770° и времени контакта 1 сек. в результате ппролиза пропана образуется около 40% вес. этилена и 22—24% пропилена на разложенный пропан [197]. С увеличением глубины превращения отношение этилен пропилен повышается за счет реакций дальне г-шего превращения пропилена. [c.40]

    Продукты реакции. Диалкилсульфиды в инертной среде под действием ряда твердых катализаторов разлагаются с образованием алкантиолов. Наиболее подробно эта реакция исследована в присутствии аморфного алюмосиликата. Исследовано [93-98] разложение диалкилсульфидов различного строения с радикалами нормального и изостроения, в которых атом серы связан с первичным или вторичным атомом углерода. При Т= 250-350 °С и небольшом времени контакта основными продуктами преврашения диалкилсульфидов являются алкантиолы и олефины с тем же числом атомов углерода, что и в связанном с серой радикале, а также сероводород. В более жестких условиях выделившиеся из сульфида олефины подвергаются в дальнейшем глубокому превращению крекингу, изомеризации, диспропорционированию водорода и др. Так, продуктами превращения ди-н-бутилсульфида при Т= 400 °С являются бутантиол-1, сероводород и углеводородные газы - основную массу (70 %) составляет бутилен-1, остальное - бутилен-2, пропилен, пропан, этилен, этан, следы метана. При превращении несимметричных сульфидов образуются алкантиолы с меньшим алкильным радикалом, например, из пропил-н-нонил-сульфида - пропантиол, а из н-бутил-изоамилсульфида - бутантиол [96-98]. [c.39]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Это явлеппе осложняет последовательное гидрирование ацетилена, в резульс тате которого получаются этилен и этан. При разложении фракции этан-пропан из природного газа Лесли п Занетти (см. выше) показали, что железо дает те же результаты, что и нпкель то же самое в отношении каталитического превращения этилена отметили Сабатье и Сандеран. [c.335]

    К преимуществам змеевиковых печей с внешним обогревом относятся высокие степени превращения и высокие выходы непредельных углеводородов. Кроме того, печи просты по устройству и отличаются легкостью регулирования режима. Выход этилена в промышленных целях за один проход составляет около 48% вес. на пропущенное сырье. Применение циркуляции позволяет увеличить выход этилена до 80% вес. При работе на пропане выход этилена на нронущенное сырье при 85—90%-ной конверсии составляет около 36% вес., а с циркуляцией может быть повышен до 48%. При работе на этилен-пропиленовом режиме суммарный выход непредельных углеводородов за один проход на промышленных установках достигает 57 % вес. от пропущенного пропана [207 ]. [c.45]

    Этан крекируется почти исключительно в этилен и водород, но даже при условии почти полного превращения содержание этилена в отходящих газах никогда не превыщает 37%. Пропан при крекинге распадается как на этилен и метан, так и на пропилен и водород согласно Шатту, 63,5% пропана превращается в этилен, 30% — в пропилен, а остальные 6,5%1 распадаются по уравнению [c.117]

    Так как в изученных условиях окнсленпя нропана этилен, пропилен И метиловый снирт дальнейшему превращению не подвергаются, то их аналитически определенные количества совпадают с истинно образо нанвыми. Иначе обстоит дело с формальдегидом, который подвергается дальнейшему окислению. Из балансовых данных и схемы имеется, однако, возможность рассчитать количество истинно образо-вааного формальдегида. Способ такого подсчета описан ниже нри подтверждении схемы вычислением но ней конечных продуктов реакции. Итак, пользуясь полученными экспериментальными данными и схемой, можно определить значения для a и 2 при разных- температурах. Через а обозначено отношение количеств н.СдН, к изо-СдН и, следовательно, зависимость от обратной температуры дает возможность определить разность энергий активации процессов отрыва атома водорода из СНз- н СНд-групп в пропане, т. е. разность энергий активаций процессов, приводящих к образованию пропильных радикалов. Из литературных данных известно, что разность в энергиях связи С—Н для первичного и вторичного атомов углерода в пропане составляет [c.245]

    Избирательная сорбция компонентов пека поверхностью кокса-наполнителя должна оказывать существенное влияние на термические превращения в связующем при обжиге. Это подтверждается результатами анализа летучих, выделяющихся из образцов при нагреве. Методом газовой хроматографии в продуктах пиролиза обнаружены водород, метан, этан, этилен, пропан, пропилен, а также оксид и диоксид углерода. В композиции кокс - связующее скорость выделения метана выше по сравнению со скоростью выделения метана из чистого пека (рис. 61) в результате увеличения глубины пиролиза пека в присутствии наполнителя. Из рис. 61 следует, что помимо изменения количества метана, образовавшегося в интервале 100—600 °С, при увеличении удёльной по- [c.155]

    Этилен, пропан н-Пентан, изопентан АЬОз, промышл. образец 450—500 бар, 450° С, этилена в исходной смеси 12—18%, 1000 превращение этилена 65%. Выход алкилата 86% (на исходный этилен). АЬОз, обработанный К2Р2 и H2SO4 500 бар, 450° С, количество этилена в исходной смеси 12— 18%, 1660 превращение этилена 77%. Выход алкилата 102% (на исходный этилен). АЬОз—К2СО3 (1%) 500 бар, 450° С, количество этилена в исходной смеси 12—18%, 850 ч , превращение этилена 63%. Выход алкилата 75% (на исходный этилен) [470] [c.164]

    Исследование углеводородов, содержащих радиоактивный углерод, методами масс-спектросконии позволило уточнить представления о подобных реакциях. Например, Эмметт и другие авторы [13—15] нашли, что олефины, образующиеся в первичной реакции крекинга, подвергаются многочисленным параллельным и последовательным превращениям, в отличие от образующихся парафинов, которые из-за небольшой длины цепи почти полностью инертны. Олефины с 6 и более углеродными атомами быстро крекируются, тогда как олефины С4 и Сд образуют высокомолекулярные полимеры, ароматические углеводороды и кокс. Этилен и бензол проявляют практически полную инертность. В другом эксперименте [16] в качестве сырья использовалась смесь радиоактивного пропилена и гексадекана, крекинг осуществлялся на алюмосиликате при 370 °С. Было найдено, что большая часть (=х90%) пропилена превратилась в пропан и продукты Сб—С12. Кроме того, из пропилена образовалась почти треть бензола (моль на 100 моль)  [c.78]

    Van Peski указывает на то, что пропан может быть превращен в смесь этилена и метана, если laro пропускать над гранулированными карбидами кальция, железа или вольфрагпа при 600 —800°. Катализатор сохраняет свою активность в течение нескольких дней. Молибден в смеси с пемзой катализирует еще более быстро разложение пропана на метан и этилен. Очевидно карбиды и молибден на пемзе оказывают избирательное каталитическое влияние на реакцию [c.144]

    Продукты превращения дивинила. В составе продуктов превращения дивинила находятся водород, метан, этилен, этан, припилен, пропан, бутилен, бутан, соединения с числом углеродных атомов более четырех (продукты димеризации или, вообще говоря, уплотнения молекул дивинила), а также углистые отложения на катализаторе. Для упрощения обработки опытных данных все эти продукты удобно разделить на две группы продукты [c.141]

    Согласно этой схеме, вначале из метионина образуется S-аденозил-монофосфат (SAM), который затем превращается в 1-аминоцикло-пропан-1-карбоновую кислоту (АКК). АКК — это непосредственный предшественник этилена, процесс ее образования стимулируют ауксины и некоторые синтетические вещества, а именно циклогексимид (препараты актиэйд, актидион), 5-хлор-3-метил-4-нитропи-разол (релиз) и глиоксим (пик-оф). Превращение АКК в этилен становится более интенсивным при повыщении температуры и в присутствии кислорода. [c.44]

    Сырье пиролиза. При выборе сырья для установок пиролиза следует учитывать характер превращений, которым подвергаются различные классы углеводородов. При пиролизе нормальных алканов имеют место следующие основные закономерности этан почти полностью превращается в этилен, из пропана и бутана с большим выходом образуются этилен и пропилен, из алканов с числом углеродных атомов более 4 получают 45—50 % этилена, пропилен и непредельные углеводороды С4 и выше. При пиролизе изоалканов выход этилена меньше, образуется больше газообразных алканов и в особенности метана. Арены при умеренных температурах пиролиза являются балластом, а при более жестких в значительной степени образуют кокс и смолу. При пиролизе циклоалканов образуется заметное количество бутадиена (до 15 %). В промышленной практике на установках пиролиза обычно перерабатывают газообразные углеводороды (этан, пропан, бутан и их смеси) и жидкие нефтяные фракции (прямогонный бензин, бензин-рафинат с установок экстракции ароматических углеводородов — см. 53). Прямогонный бензин обладает преимуществами в сравнении с рафинатом, так как содержит в основном нормальные алканы, тогда как в рафинатах до 50 % изоалканов, при пиролизе которых, как уже указывалось, образуется много газа. В последние годы в качестве сырья крупнотоннажных этиленовых установок применяются в основном бензиновые фракции. Использование этого вида сырья позволяет получить наряду с низшими алкенами ценные ароматические углеводороды, сырье для производства технического углерода и нафталина. [c.189]


Смотреть страницы где упоминается термин Превращение пропана в этилен: [c.15]    [c.18]    [c.248]    [c.62]    [c.103]    [c.148]    [c.455]    [c.319]    [c.185]    [c.299]   
Смотреть главы в:

Катализ в промышленности. Т.2 -> Превращение пропана в этилен




ПОИСК





Смотрите так же термины и статьи:

Пропан

Пропанои



© 2025 chem21.info Реклама на сайте