Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активаторы комплексообразования

    Сырье насосом 1, активатор насосом 2 и (если необходимо понизить вязкость сырья) растворитель (бензин Бр-1) насосом 3 подаются в реактор комплексообразования 11. Туда же поступает рециркулят I из центрифуг 14 ступени III центрифугирования, представляющий собой часть бензинового раствора депарафината и 80 %-ную суспензию (пульпу) кристаллического карбамида в этом растворе. В реакторе 11 при механическом перемешивании протекает реакция комплексообразования. Теплота экзотермического процесса комплексообразования передается через рубашку холодной воде. [c.91]


    Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]

    Особенности процесса. Депарафинизацию нефтяных фракций проводят водным раствором карбамида, насыщенным при 70°С. В качестве растворителя сырья и активатора комплексообразования применяют хлористый метилен. Требуемая температура комплексообразования (20-40°С) достигается путем испарения регулируемого количества хлористого метилена. [c.130]

    По вопросу влияния воды на эффективность спиртов как активаторов комплексообразования исследователями [13, 58] высказаны противоречивые мнения. В работе [60] показано, что с ростом молекулярной массы спиртов время активации карбамида резко увеличивается. [c.17]

    Скорость комплексообразования растет с увеличением концентрации активатора и с уменьшением размера гранул карбамида. [c.151]

    Достоинства применения вода в качестве растворителя карбамида низкая стоимость, нерастворимость в депарафинированном продукте недостатки - трудность отделения депарафинированного продукта от комплекса, гидролиз карбамида и др. Некоторые авторы [II, 41, 45] считают целесообразным проводить комплексообразование н-алканов карбамидом, содержащим до 10% воды, в отсутствие полярных растворителей роль разбавителя и активатора выполняет вода. [c.72]

    Состав компонентов суспензии комплекса карбамида с н-алканами. В результате комплексообразования карбамида с н-алканами образуется суспензия комплекса в среде нефтяной фракции, бензина и небольшого количества активатора (процесс с кристаллическим карбамидом) или в среде нефтепродукта, растворителя и водного или спиртового раствора карбамида. Следовательно, состав компонентов суспензии комплекса характеризуется количеством нефтепродукта, растворителя, комплекса, свободного карбамида л активатора. [c.77]


    Схема технологического процесса. Кристаллический карбамид, масло и метанол, применяемы) в качестве активатора, перемешивают в реакторе комплексообразования. Образовавшийся комплекс отделяют от депарафинированного масла на ротационном барабанном вакуумном фильтре и направляют в реактор для разложения путем нагревания до ИО°С. Разбавителем суспензии служит часть депарафинированного масла. Регенерированный карбамид и парафин удаляют из реактора разложения и направляют на фильтр. [c.148]

    Депарафинизацию кристаллическим карбамидом осуществляют следующим путем (рис. 56)., Сырье — фракция дизельного топлива— подается в реактор комплексообразования 1. Сюда же поступает кристаллический карбамид из центрифуг ступени разложения комплекса 7, бензин БР-1 Галоша и активатор — метиловый спирт. На депарафинизацию подается карбамид (примерно [c.186]

    Принципиальная схема депарафинизации дизельного топлива водным раствором карбамида представлена на рис. 57. Процесс проводят в присутствии хлористого метилена, который является одновременно растворителем сырья, активатором, хладоагентом и промывным агентом. Исходное сырье поступает в реактор комплексообразования I ступени 1. Сюда же подают (100—300 вес.% на сырье) промывной растворитель из фильтра I ступени 5 и добавляют насыщенный при 80°С водный раствор карбамида (содержащий 76 вес.% карбамида). Количество водного раствора карбамида берется из расчета подачи 80—100 вес.% карбамида на сырье. [c.187]

    Наиболее вероятный механизм действия активаторов [27] заключается в том, что, являясь полярными веществами, они способствуют уменьшению межмолекулярных сил взаимодействия молекул твердых и жидких углеводородов. При этом твердые углеводороды высвобождаются из раствора, что благоприятствует образованию спиралеобразной гексагональной структуры карбамида и, следовательно, комплексообразованию. Эта гипотеза объясняет и тот фа кт, что полярные растворители (иекоторые спирты, кетоны и хлорорганические соединения) в условиях комплексообразования легко растворяют жидкие и не растворяют твердые углеводороды, выполняя одновременно функции растворителя и активатора. [c.203]

    Карбамид можно применять в кристаллическом состоянии, в виде растворов в воде,спиртах, кетонах и эфирах, а также в виде пульпы. Для активации процесса комплексообразования применяют активаторы — спирты, кетоны, воду и др. Примеси, находящиеся в депарафинируемом продукте в растворенном состоянии (смолы, мыла, серосодержащие соединения), а также во взвешенном (твердые углеводороды, пыль, окись железа и др.), тормозят процесс комплексообразования и увеличивают его индукционный период. Поэтому депарафинируемый продукт должен быть предварительно очищен. [c.213]

    Известно, что с увеличением молекулярной массы спиртов эффективность их как активаторов уменьшается и избыток активатора не только не дает дополнительного эффекта, а, наоборот, ухудшает процесс комплексообразовдния 31, 4в]. Во второй серии "опытов изучали влияние этих же опиртов на селективность комплексообразования. Установлено, что с увеличением молеку-лярнт массы спирта меняется не только его оптимальная концентрация, но и выход, и свойства твердых парафинов. Наиболее эффективными активаторами комплексообразования оказались метанол, этанол и изопрапанол. Самая высокая селективность процесса наблюдалась с изопропанолом, что следует из значений Зу,, приведенных в табл. 30. Использование спиртов, способных образовывать комплекс с карбамидом, снижает глубину извлечения из гача твердого парафина, причем неожиданно н-гептанол и н-октанол оказались эффективнее н-бутанола как по выходу, так и по селективности процесса. Объяснение этого факта требует дополнительных исследований. Выход парафина с увеличением расхода всех спиртов резко возрастает, а затем также резко уменьшается за исключением метанола, у которого эта тенденция выражена слабо. [c.219]

    На процесс образования комплексов отрицательно сказывается присутствие во взаимодействующих веществах примесей и загрязнений. Так, А. В. Топчиев с сотрудниками установили, что к-октадекан высокой степени чистоты способен образовывать комплексы с чистым карбамидом без растворителей-активаторов [47]. Недостаточно же очищенный к-октадекан комплексов с карбамидом при непосредственном контакте не дает, и для образования комплекса требуется добавка активатора. Выло отмечено отрицательное влияние па процесс комплексообразования смолистых веществ [48]. Кроме них, отрицательно действуют на процесс комплексообразования также нафтеновые кислоты и продукты окисления обрабатываемого сырья воздухом [38, 49]. Препятствуют комплексообразовапию и продукты разложения карбамида, образующиеся при его регенерации. [c.147]

    Исследованию влияния воды на эффективность спиртов как активаторов комплексообразования посвящен ряд работ [48, 69, 34], в которых высказываются противоречивые мнения. В третьей серии опытов [65] к установленному оптимальному количеству спиртов последовательно добавляли 25, 60 и 75% (масс.) воды на спирт. Из результатов этих опытов (рис. 88) видно, что добавление воды даже есгколько уменьшает эффективность метанола [c.219]


    Наиболее эффективными активаторами комплексообразования являются метанол, этанол и 2-пропанол (изопропиловый спирт) [11]. Начиная с пентанола спирты-активаторы способны образовывать комплекс с карбамидом,в этом случае основную роль играет эффект обмена [59] спирта в комплексе на углеводороды. Имеются данные [45], что карбамид, предварительно обработанный спиртом, оказался значительно активнее карбамида, активированного спиртом непосредственно перед комплексообразованием. [c.17]

    Исследованием воды как активатора комплексообразования карбамида с нормальными алканами нефти и нефтепродуктов, в лаборатории авторов установлено, что вода способствует растворению карбамида, но ее можно йрименять для обработки нефтей или нефтепродуктов, содержащих сравнительно небольшое количество смол. Так, использование воды как активатооа дало хорошие результаты при обработке карбамидом долинской нефти (смол 8,4%), озек-суатской (смол 3,1%), ле- [c.19]

    Селективные ионы-активаторы комплексообразования ДАДЛЭ с ц-рецепторами (ионы защищают рецептор от модификации. [c.458]

    Депарафинизация с использованием карбамида отличается от депарафинизации избирательными растворителями возможностью проведения процесса при положительных температурах. Здесь приводятся два варианта принципиальных схем процесса карбамидной депарафинизации, нашедших применение в отечественной нефтеперерабатывающей промышленности схема процесса, разработанного Институтом нефтехимических процессов Академии наук Азербайджанской ССР (ИНХП) и запроектированного ВНИПИнефти, и схема процесса, разработанного Грозненским нефтяным научно-исследовательским институтом (ГрозНИИ) и запроектированного Грозгипронефтехимом. Схемы различаются агрегатным состоянием карбамида, подаваемого в зону реакции комплексообразования, и, как следствие, аппаратурным оформлением реакторного блока, а также секций разделения твердой и жидкой фаз и регенерации основных реагентов. Кроме того, используются различные активаторы и растворители, хотя в обоих вариантах целевыми являются одни и те же продукты низкозастывающие дизельные топлива или легкие масла и жидкие парафины. [c.88]

    Иногда комплексообразование протекает не полностью или осуществляется очень медленно. У некоторых нефтяных фракций способность к комплексообразованию снижается в отсутствии подходящего для реагента растворителя или активатсра, который Циммерпшд назвал ингибитором. Добавление небольшого количества свежеприготовленного комплекса часто способствует устранению этого недостатка. Вообще добавление или увеличение количества активатора уменьшает затруднения. [c.222]

    При использовании кристаллического карбамида без активаторов скорость комплексообразования увеличивается с уменьшением размеров кристаллов карбамида и повышением концентрации нормальных парафиновых углеводородов [17, 29, 33]. Продолжительность конта1ктир01аания реагирующих кампонентов при ис- [c.203]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    По данным Граната и Батори [34, 35] время, необходимое для завершения комплексообразования, составляет от 15 мин до нескольких часов. При использовании воды в качестве активатора или растворителя карбамида комплексообразование начинается после некоторого индукционного периода, который сокращается при введении затравки [35, 36] и увеличивается в присутствии смол [30, 36]. Смолы адсорбируются на кристаллах комплекса, препятствуя их росту, или на поверхности раздела фаз водный раствор карбамида — углеводороды, нарушая контакт между этими фазами. [c.204]

    Вопрос о механизме действия активаторов в процессе карбамидной депарафинизации до сих пор является дискуссионным. Выдвинут ряд гипотез, объясняющих роль активаторов при комплексообразовании веществ с карбамидом. Так, авторы работ [3, 64] считают, что активаторы пассивируют действие ингибиторов комплексообразования, растворяя карбамид и тем самым препятствуя адсорбции неуглеводородных примесей на го кристаллах. Действие активаторов объясняют их способностью образовать од- [c.216]

    В первой серии опытов для каждого спирта устанавливали оптимальную длительность активации карбамида. Карбамид, предварительно обработанный спиртом, оказался значительно актив- нее карбамида, активированного спиртом непосредственно перед комплексообразованием. Этому факту придается мало значения. Однако есть указания на то, что свежеприготовленные водные растворы карбамида менее актив(ны, чем растворы, приготовленные за несколько дней до опыта [12, с. 607 66]. Ригамонти и Па-нетти [48] наблюдали адсорбцию метанола карбамидом из раствора цетана в ксилоле сразу, тогда как образование камплекса цетана с карбамидом началось только после окончания индукционного периода. Другие спирты адсорбировались в меньших количествах. Результаты определения предварительной длительности активации карбамида спиртами приведены на рис. 87, из которого видно, что с ростом молекулярной массы спиртов длительность активации резко возрастает. Для более высокомолекулярных спиртов, начиная с н-пентанола, которые сами способны образовывать комплекс с карбамидом, предварительная длительность активации не влияет на выход парафина. Полученные результаты хорошо коррелируются с данными [48] об a д opбции спиртов карбамидам и подтверждают адсорбционную теорию действия активаторов, предложенную в работе [67]. При применении в качестве активаторов спиртов, способных образовывать комп- [c.218]

    При увеличении расхода растворителя равновесие сдвигается вправо, при этом расход активатора, участвующего в процессе комплексообразования, уменьшается. Это приводит к необходимости одновременно повышать расход активатора, что снижает экономичность процесса. Кроме того, растворитель в какой-то степени разрушает комплекс, поэтому повышение его содержания приводит к повышению расхода карбамида. С увеличением расхода хлористого метилена выше оптимального [54] (табл. 31) снижается скорость и глубина извлечения комплексообразующих компонентов из фракций долинской нефти. Так, при обработке этих фракций (100% (масс.) карбамида оптимальный расход хлористого метилена составляет 100—1150% (масс.) на нефть. В связи с этим авторы [63] предлагают использовать для рецир,куляции депарафинированное дизельное топливо и раствор парафина. Следовательно, выбор растворителя и активатора для карбамидной депарафинизации и их оптимального расхода зависит от качества сырья, природы растворителя и активатора, их взаимной [c.221]

    Одним из условий комплексообразования карбамида с углеводородами является контакт между молекулами карбамида, активатора и этих углеводородов. Предложен ряд методов контактирования нефтяного сырья с карбамидом, среди которых наиболее эффективно перемешивание, применяющееся на промышленных установках депарафинизации с использованием как кристаллического карбамида, так и его растворов и пульпы. При перемешивании в результате тесного контакта между активатором и кристаллическим карбамидом поверхность последнего освобождается от смол и других неуглеводородных компонентов сырья, преиягст-вующих образованию комплекса. По данным [75], при депарафинизации водным раствором карбамида длительность индукционного периода комплексообразования зависит не только от содержания и структуры омол, находящихся в сырье, но и от поверхности раздела масляной и водной фаз, а также от скорости ее развития чем быстрее развивается эта поверхность, тем меньше индукционный период. [c.236]

    При добавлении активаторов реакция комплексообра-эования подобно химической реакции ускоряется. Детальные изучения влияния условий реакции комплексообразования на выход кристаллических комплексов, а также состава последних показало, что мольное отношение н-алканы карбамид должно быть пропорционально числу групп СН2 в молекуле углеводорода и равно (независимо от длины цеци примерно 0,7. В настоящее время для определения мольного отношения карбамид углеводород предложены эмпирические формулы ш= 0,65 л + 1,5 [27] т = 0,6848(П -I) + 2,181 [7] т = 0,В85п + 1,34 [28] [c.37]

    Эти данные свидетельствуют о том, что метанол в процессе комплексообразования является не только хорошим активатором процесса, но и эффе стивным растворителем ароматических углеводородов, предотвращая адсорбцию их на кристаллах карбамида. Ацетон и МЭК неодинаково растворяют различные ароматические углеводороды. Ксли-ацетон растворяет антрацен на 58 . а 0 -метилнафталин на 29%, то НВК растворяет лучше о( -метилнафталин. чем антрацен. Этанол растворяет в равной степени исследуемые углеводороды, но он слабее метилового спирта. [c.52]

    Некоторые соединения, такие, как ацетон, метилэтил-кетон, изопропанол, хлористый метилен и другие, могут быть одновременно растворителялш нефтепродуктов и активаторами процесса комплексообразования. О широком применении растворителей, особенно первой группы, сообщается многими исследователями[1-22, 29, 30, 34]. [c.70]

    Активаторы, повышая растворимость одного из реагирующих веществ в основном растворителе, не должны при этом снижать растворимость другого реагирующего вещества. При добавлении избыточного количества активатора может снизиться растворимость второго взаимо-действздащего вещества или образоваться вторая жидкая фаза, отвлекающая карбамид из зоны реакции, что ухудшает условия комплексообразования. [c.75]

    Необходимое для процесса количество активатора зависит от его природы. Так, для депарафинизации дистиллятов грозненской нефти в растворе углеводородного растворителя требуется метилового спирта 2 (масс.), этилового спирта 25% (масс.), ацетона или метилэтилкетона 40% (масс.). При использовании в качестве активатора пропилового спирта очень важно, чтобы содержание в нем воды было 8-9% (масс.).Вода увеличивает растворимость карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. Однако при содержании воды более Э% процесс комплексообразования ухудшается. Безводные активаторы, как правило, не способствуют протеданию реакции комплексообразования. [c.75]

    Особенности процесса. Депара-финизадию сырья проводят спирто-водным раствором карбамида. насыщенным при 30-40°С. В качестве растворителя нефтепродукта и активатора процесса применяет изопропиловый спирт.Комплексообразование парафина с карбамидом проводят в реакторах ступенчато, постепенно понижая температуру [c.103]

    Особенности процесса. Для депарафинизации нефтяных фракций применяют карбамид в кристаллическом состоянии, которое он сохраняет на стадиях комплексообразования и разложения. В качестве разбавителя используют бензин "Галоша" или прямогонныА бензин, выкипающий в пределах В0-120°С. Активатором служит 98%-ный метанол. [c.114]

    Сырье - дизельное топливо насосом 28 (рис.2.24) подают тарез холодильник 27 в электроразделитель 33, где оно обезвоживается под действием электрического поля постоянного тока высокого напряжения.. Сырье, не содержащее влаги, с верха электроразделителя направляют в мешалку 15, куда одновременно подапт циркулирующий" карбамид, фугат бензина (бензин после npoif iBKH комплекса) и активатор - метанол. Образовавшуюся суспензию комплекса из мешалки 15 насосом 35 прокачивают через холодильник 14 (для снятия тепла комплексообразования) и мешалку 13 (с целью завершения реакпии комплексообразования) и направляют для разделения на центрифугу 3. Из центрифуги раствор депарафинированного дизельного топлива в бензине самотеком поступает в буферную емкость 10 и далее в электроразделитель 34, где метанол экстрагируется слабым водным раствором метанола. Раствор депарафинированного дизельного топлива в бензине выводят с верха электроразделителя на блок регенерации бензина в колонну 17. Влажный комплекс выгружают из центрифуги в мешалку 9, в которой промывают комплекс фугатом бензина Ц ступени прошвки. Из мешалки 9 суспензию комплекса подают насосом 31 на центрифугу 2 Из центрифуги 2 фугат бензина I ступени промывки поступает в емкость 8, а комплекс выгружают в мещалку 7 для второй промывки чистым бензином. Из мешалки 7 сус пензию комплекса подают насосом 29 на Ш ступень [c.115]

    Разработанный в СССР способ депарафинизации нефтепродуктов кристаллическим карбамидом с применением в качестве растворителя-активатора низших нитроалканов [72] позволит, по мнению авторов этой работы, упростить процесс. С целью улучшения качества нидких парафинов, упрощения процесса депарафинизации воднш раствором карбамида и кристаллическим кар Замидом в запатентованы [73] способы комплексообразования в присутствии растворителя легче или тяжелее комплекса и метилизобутилкетоне (МИБК). Запатентованный способ карбамидной депарафинизации позволяет получать чистые н-алканы через комплексы, представляющие собой мелкокристаллический порошкообразный продукт. Получение и обработка комплекса в присутствии смеси углеводородов Сд - С0 о 5-30 вышекипящих соединений, предпочтительно в присутствии МКШ, позволяет весТи комплексообразование при 20-35°С. Получаемый комплекс легко отделяется на центрифугах. Известны и другие способы, которые, однако, в промышленность не внедрены. [c.158]

    Большая часть вариантов процесса карбамидной депарафинизации предусматривает введение активаторов — веществ, ускоряющих процесс комплексообразовання. В качестве активаторов предложены и применяются спирты (наиболее эффективен метиловый спирт), кетоны, нитроалканы. Активаторы селективно растворяют ингибиторы—арены и сернистые соединения, предотвращая их адсорбцию на кристаллах карбамида. Кроме того, активатор, растворяя часть карбамида, способствует протеканию процесса в гомогенной среде с большей скоростью. [c.116]


Смотреть страницы где упоминается термин Активаторы комплексообразования: [c.220]    [c.32]    [c.271]    [c.143]    [c.88]    [c.203]    [c.209]    [c.210]    [c.216]    [c.217]    [c.227]    [c.74]    [c.68]   
Смотреть главы в:

Карбамидная депарафинизация -> Активаторы комплексообразования




ПОИСК





Смотрите так же термины и статьи:

Активаторы

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте