Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры на поверхностное натяжение жидкости

    При исследовании влияния температуры на поверхностное натяжение жидкостей были получены данные, представленные в таблице 1.4 (1—вода, 2—метанол, 3 — этанол, 4—бутанол, 5—анилин, 6 — нитробензол, 7 — хлорбензол, 8—гексан). Определить внутреннюю энергию и энтропию поверхностного слоя. Какие выводы следуют из линейного характера зависимости а = /(Т) и отрицательного знака температурного коэффициента поверхностного натяжения  [c.22]


    Сущность работы. Метод наибольшего давления пузырька удобен для определения поверхностного натяжения жидкости лри различной температуре. Поэтому определять влияние тем- [c.19]

    Отклонение реальной тарелки от нормы для теоретической ступени контакта имеет следствием сужение разрыва между составами фаз па смежных тарелках, приводящее к увеличению числа реальных тарелок против теоретически необходимого для данного разделения. Причины подобного рода отклонений оказываются самыми разнообразными и зависят от множества условий, определяемых как рабочими параметрами режима колонны — давлением, температурой, количествами паровых и жидких потоков, так и свойствами разделяемой системы — плотностью и вязкостью паров и флегмы, относительной летучестью ее компонентов, поверхностным натяжением насыщенной жидкости. Следует также указать и на влияние чисто конструктивных факторов, таких, как тип тарелки, размеры сливного устройства, расстояние между тарелками. Учет совокупного действия всех указанных факторов весьма сложен, и этим объясняется широкое привлечение эмпирических корреляций для определения эффективности реальных тарелок. [c.209]

    Величины поверхностного натяжения и угла смачивания сильно зависят от адсорбции посторонних веществ на поверхности стекла и жидкости, непостоянства состава и шероховатости поверхности стекла. С увеличением диаметра трубки влияние изменения поверхностного натяжения и угла смачивания на погрешность измерения уменьшается. Роль изменения коэффициента преломления по длине трубки манометра на общую погрешность измерения значительно снижается с уменьшением толщины стенок трубок. Влияние изменения плотности жидкости по длине трубки на погрешность измерения манометров особенно заметно в случае масляных манометров. Коэффициенты линейного расширения масла и ртути равны соответственно 1-10" и 1,8-10 град , поэтому разность в температуре (на 1°) двух колен манометра длиной 200 мм дает в случае масляного наполнения ошибку измерения в 0,2 мм VI в случае ртутного наполнения 0,04 мм. [c.22]

    Из уравнений (1.9), (1.13) и (1.61) и опытных данных следует, что критическое пересыщение пара зависит от температуры. Это обстоятельство имеет очень существенное значение и должно учитываться при решении практических вопросов. С повышением температуры поверхностное натяжение жидкости уменьшается, поэтому отношение а/Г, входящее в уравнения (1.9), (1.13) и (1.61), с повышением температуры уменьшается. По этой же причине с повышением температуры уменьшается и критическое пересыщение пара. Уменьшение плотности жидкости, входящей в знаменатели указанных уравнений, при повышении температуры оказывает меньшее влияние на величину 5, чем отношение а/7 . [c.36]


    Большое влияние на структуру силикагелей и их адсорбционные свойства оказывает температура обезвоживания низкая температура приводит к получению тонкопористого силикагеля, в то время как повышение температуры приводит к понижению поверхностного натяжения жидкости и укрупнению пор. При постепенном нагревании силикагель претерпевает следующие изменения  [c.121]

    Вследствие произвольности выбора потенциальной функции и учета влияния деформации поверхности теоретические значения поверхностной энергии ионных кристаллов являются довольно неопределенными. В табл. V-2 приведены некоторые энергетические характеристики поверхностей ионных кристаллов, взятые из работы Бенсона и Юна [53]. Проверить эти данные экспериментально трудно (см. разд. V-5). Исходя из общих соображений, можно было бы ожидать, что поверхностная энергия твердого тела заметно выше поверхностного натяжения жидкости. Настораживает, однако, что приведенное в табл. V-2 значение поверхностной энергии плоскости (100) хлорида натрия составляет 158 эрг/см , тогда как поверхностное натяжение расплавленной соли равно 190 эрг/см [39]. Вообще говоря, экстраполяция поверхностного натяжения расплавленной соли на комнатную температуру с помощью какой-либо полуэмпирической теории, например приведенной в работе [c.211]

    На концентрацию растворенного в культуральной жидкости кислорода и в целом на кинетику роста микроорганизмов значительное влияние оказывают физико-химические характеристики среды (pH среды, еН среды, температура) [43, 44]. В то же время в процессе жизнедеятельности микроорганизмы, выделяя в среду продукты клеточного метаболизма, изменяют ее вязкость, поверхностное натяжение, растворимость кислорода, углеродсодержащего субстрата, условия сегрегации клеток, реологические характери- [c.86]

    РАБОТА 3. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЖИДКОСТИ [c.19]

    На точность гидрирования оказывают влияние три главных фактора температура, давление и поверхностное натяжение жидкости в электрометрической ячейке. При мертвом объеме 46,5 мл, когда в реакционный сосуд вводят 5 мл растворителя, изменение температуры во время гидрирования на 1 °С эквивалентно 0,16 мл газа. Окончательный результат может быть высоким или низким в зависимости от направления изменения температуры. Для сравнительно больших проб, требующих около 15 мл водорода, погрешность анализа, обусловленная изменением температуры, составит лишь 1%, для малых проб она может достигать 20%. Колебания температуры в опытах Миллера и Де Форда были невелики и ИМ И можно было пренебречь. Точность анализа оставалась высокой. В летнее время колебания комнатной температуры могут достигать в течение дня 10 °С, но во время измерения колебания должны быть малыми. В некоторых случаях приходится пользоваться специальными методами регулирования температуры. [c.328]

    Влияние температуры на поверхностное натяжение. Поверхностное натяжение жидкости Ожг, которое влияет на равновесие капли (см. рис. 1,1), в свою очередь зависит от температуры. [c.84]

    Влияние температуры на поверхностное натяжение. Поверхностное натяжение зависит не только от природы жидкости, но и от температуры с повышением температуры поверхностное натяжение понижается (табл. 6). [c.29]

    Температура раствора и концентрация растворенных веществ оказывают такое же влияние на поверхностное натяжение на границе раздела жидкость — жидкость, как и в случае границы раздела жидкости— газ. Давление практически не влияет на эту величину. [c.427]

    Влияние температуры и давления на поверхностное натяжение жидкостей можно установить, исходя из молекулярного механизма возникновения свободной поверхностной энергии и энергетической сущности поверхностного натяжения. [c.166]

    Совместное влияние формы молекулы и ее полярности помогает объяснить многие из свойств воды, рассмотренные выше. Например, поскольку разноименные заряды притягиваются, противоположные концы соседних молекул слипаются друг с другом. Это приводит к высокой температуре кипения воды. (Для разделения молекул жидкости и образования пара необходимо затратить много тепловой энергии.) Высокое поверхностное натяжение и понижение плотности при кристаллизации льда также может быть объяснено формой молекул воды и их электрической полярностью. В добавление к этому из-за своей полярности молекула воды притягивается к молекулам других полярных веществ. Следовательно, вода способна растворять соединения самой разнообразной структуры. [c.44]

    Исходя нз теории упругости полимеров, В. А. Каргиным и Г. Л. Слонимским [191] разработана теория трех деформационных состояний стеклообразного, высокоэластичного и вязкотекучего. Температурные интервалы этих состояний зависят от размеров ССЕ, интенсивности внешнего воздействия (скорости нагрева) и других факторов. С целью удобства сопоставлении механической прочности различных НДС, находящихся ниже температуры текучести, предложены стандартные методы, с помощью которых определяют интервал хрупкости, дуктильности и пенетрацию. Поверхностное натяжение является одной из определяющих характеристик для форлМЫ ССЕ тех НДС, в которых обе фазы представляют собой жидкости или жидкость и газ. Поверхностное натяжение веществ находится в зависимости от сил ММВ в них. Поверхностное натяжение жидких тел 1а границе с воздухом сопоставимо с силами ММВ в объеме. Поэтому жидкость под влиянием поверхностного натяжения стремится принять такую форму, при которой ее поверхность при данном объеме будет наименьшей, т. е. сферической. Несмотря на более [c.146]


    Поверхностное натяжение уменьшается с увеличением температуры. С величиной а связаны характеристики смачивания капельными жидкостями твердых материалов смачивание оказывает существенное влияние на гидродинамические условия протекания процессов в абсорбционных и ректификационных аппаратах, конденсаторах паров и др. [c.29]

    Из уравнений, показывающих влияние температуры на поверхностное натяжение чистых жидкостей, наиболее распространено уравнение, предложенное Ван-дер-Ваальсом  [c.16]

    Как видно из приведенного уравнения, влияние внешнего давления, обусловленного присутствием инертного газа, обычно невелико. Например, для воды при комнатной температуре возрастание внешнего давления на 1 ат вызывает возрастание давления пара на 0,1%. Другим фактором, влияющим на давление насыщенного пара, является характер поверхности жидкости, обусловленный действием поверхностного натяжения. Это влияние заключается в изменении давления пара над искривленными поверхностями по сравнению с его давлением над плоской поверхностью. [c.21]

    Влияние термической конвекции рассматривалось и в некоторых исследованиях других процессов горения. Известно, что распространение пламени вдоль горючих жидкостей при температуре ниже температуры вспышки существенно зависит от течений, возникающих в жидкости. Расчет этих течений, управляемых силами поверхностного натяжения и выталкивающими силами, проводился в работах [75, 78, 97—99]. Из других исследований процессов горения можно назвать работы, посвященные изучению развития и распространения пламени [9, 27, 39, 71] и обзору особенностей пожаров в зданиях [25, 26]. [c.414]

    Из этого выражения следует, что скорость жидкостного спекания, характеризуемая усадкой, прямо пропорциональна поверхностному натяжению на границе жидкость — твердая фаза (при условии хорошего смачивания, т. е. при малом поверхностном натяжении на границе жидкость — газ) и обратно пропорциональна вязкости жидкой фазы и размеру частиц твердой фазы. Поскольку поверхностное натяжение жидкой фазы во многих силикатных системах не очень сильно меняется при изменении их состава и температуры, то решающее значение для жидкостного спекания имеют сильно зависящая от температуры вязкость жидкой фазы и размер частиц твердой фазы. Увеличению интенсивности жидкостного спекания способствует понижение вязкости расплава (хотя часто чрезмерное снижение вязкости недопустимо из технологических соображений, так как может привести к деформации изделий под влиянием силы тяжести) и уменьшение размеров частиц спекающейся твердой фазы (например, при уменьшении размера частиц от 10 до 1 мкм скорость жидкостного спекания при прочих равных условиях увеличивается в 10 раз). [c.342]

    Наблюдаемое значительное отклонение экспериментальных результатов при О °С от прямолинейной зависимости в координатах 1 т — (1/Т) в настоящее время пока трудно объяснимо. Однако можно предположить, что ввиду достаточно сильного изменения таких свойств жидкостей, как вязкость и поверхностное натяжение при данной температуре, изменяется влияние жидкости на кинетику разрушения. Разрушающая активность жидкой среды по отношению к полимеру значительно уменьшается, и относительная роль термофлуктуационного механизма в процессе разрушения возрастает, [c.149]

    В этом разделе основное внимание уделено изменению поверхностного натяжения бинарных систем в зависимости от их состава. Влияние других переменных, таких, как давление и температура, в данном случае подобно влиянию аналогичных переменных, наблюдаемому для чистых веществ, и поэтому здесь не рассматривается. Межфазное натяжение несмешивающихся жидкостей обсуждается также в разд. ПГ2. [c.58]

    Иначе обстоит дело в НДС. В этом случае Ло/Л имеет конечное значение и на свойства дисперсных систем (в том числе на химические свойства) существенное влияние начинает оказывать энергия поверхностных центров, обусловленных действием ван-дер-ваальсовых сил и наличием на поверхности различного рода химических дефектов — свободных радикалов, функ-циональных групп или, иными словами, неоднородностей поверхности. Изменение отношения Ло/Л в зависимости от hjr. как известно, носит экстремальный характер. На рис. 52 показана динамика поверхностного натяжения и изобары адсорбции для молекулярной жидкости (кривая 1) и НДС (кривая 2] в зависимости от температуры. Видно, что с изменением температуры поверхностное натяжение для молекулярных жидкосте ) (Ло/Лл- оо) изменяется монотонно, в то время как динамика [c.152]

    В процессе пленочной дистилляции весьма важной задачей является поддержание устойчивого режима течения пленки, предостерегающего ее от разрыва. Возможность разрушения пленки связана с существованием некоторого минимального расхода жидкости, при котором твердая поверхность перестает смачиваться жидкостью. Величина этого минимального расхода зависит от физико-химических свойств жидкости (вязкости, угла смачивания), а также динамических напряжений, связанных, например, с градиентом поверхностного натяжения. В случае ректификации этот градиент может возникнуть за счет непрерывного изменения состава жидкой смеси, либо за счет градиента температуры [245, 246]. В работе [247] экспериментально исследована скорость массопередачи при эквимолярной пленочной ректификации бинарных систем, протекающей в условиях поверхностной нестабильности. Для учета влияния градиента поверхностного натяжения на коэффициент массопередачи предложено полуэмпирическое уравнение, которое удовлетворительно согласуется с экспериментальными данными по ректификации бинарных смесей, таких, как четыреххлористый углерод—бензол и бензол—1,2-дихлорэтан. [c.125]

    В соответствии с уравнением (1,7) равновесное состояние капли зависит от краевого угла и поверхностного натяжения жидкости. Значения этих величин (сТшг и 0) определяются температурой, относительной влажностью воздуха, наличием вакуума и другими факторами, влияние которых рассмотрим более подробно. [c.81]

    Все так называемые классические методы определения поверхностного натяжения жидкостей, созданные еще в XIX веке, оказались пригодными для измерения 012 любых веществ, начиная от металлических расплавов и кончая полимерными жидкостями. Однако лишь в наше время методики измерения 012 были усовершенствованы и позволяют получать надежные результаты. Это стало возможным после того, как были созданы методы получения высокого вакуума и низких температур, изучено влияние адсорбционных процессов на определяемую величину поверхностного натяжения, влияние на поверхностное натяжение изучаемой жидкости паров вакуумной смазки, масла диффузионных насосов, жидкостей, содержащихся в i/-oбpaзныx манометрах и проч. Найдено, что даже небольшие температурные градиенты в приборах для определения поверхностного натяжения приводят иногда к сильным искажениям температурной зависимости о. Обнаружено, что передача малейших вибраций на измерительные приборы, использующие полустатическне методы, обусловливает сильный разброс экспериментальных точек и резкое снижение определяемой величины поверхностного натяжения. [c.109]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    Для измерения атмосферного давления с точностью 0,1 мм рт. ст. следует применять прецизионные ртутные барометры, которые изготавливаются в виде рычажных, чашечных или комбинированных рычажно-чашечных моделей [32]. В лабораторной практике часто пользуются барометрами Гей-Люссака и Шродта-Кифера. Надежный отсчет показаний с точностью 0,1 мм рт. ст. обеспечивает нониус, или еще лучше —катетометр. Прибор для измерения давления жидкости, разработанный Никелем [32], учитывает влияние поверхностного натяжения исследуемой жидкости и позволяет корректировать смещение начала отсчета, возникающее, например, при изменении температуры. [c.439]

    Цель работы. Установить влияние температуры на поверх- остное натяжение чистой жидкости. Ознакомиться с методом, удобным для определения поверхностного натяжения при высокой температуре. [c.19]

    Влияние температуры на вязкость. Вязкость жидкостей является единственным их свойством, которое резко изменяется с изменением температуры и давления. Причем эта зависимость тем резче, чем более вязкая жидкость. Так, при изменении температуры от 223 до 448° К при постоянном давлении вязкость авиационного масла уменьшается примерно в 100 раз, а при изменении давления от 10 до 10 при постоянной температуре она увеличивается примерно в миллион раз. Так же, как и в случае зависимости поверхностного натяжения от температуры, здесь нет еще общих закономерностей, определяющих зависимость вязкости жидкостей от температуры и давления. Было предложено много эмпирических уравнений, выражающих зависимость вязкости от темпе-)атуры, но каждое из них имеет лишь ограниченное применение. Лростое уравнение, выражающее зависимость вязкости неассоции-рованных жидкостей от их удельного объема, было установлено опытным путем Бачинским в 1913 г. Он нашел следующую зависимость  [c.45]

    ЖИДКОСТИ — агрегатное состояние тела промежуточное между твердым и газообразным состояниями. По своей высокой плотности и малой сжимаемости, а также по наличию сильного межмоле-кулярного взаимодействия Ж. близ1 и к твердым телам и существенно отличаются от газов. Наряду с этим, изотропность, текучесть (способность легко изменять внешнюю форму под действием малых нагрузок) приближают их к газам. Вязкость Ж., в отличие от газон, резко падает с повышением температуры. Ж- ограничена со стороны низких температур переходом в твердое или стеклообразное состояние. Для каждого вещества характерна критическая температура, выше которой Ж. не может существовать в равновесии с собстпеиным паром. Под влиянием поверхностною натяжения Ж- стремится приобрести форму шара. Как правило, вещества имеют только одну жидкостную модификацию, за исключением некоторых веществ, для которых наблюдается как нормальная жидкая фаза, так и анизотропные фазы. Это жидкие кристалл , а также гелий, который может находиться в двух жидких фазах. Структура и физические свойства Ж- зависят от химической индивидуальности образующих ее частиц и от характера и интенсивности сил, действующих между ними. В Ж- существует т. наз. ближний порядок , проявляющийся в том, что число окружающих молекул и их взаимное расколожение в среднем для всех молекул одинаково. [c.97]

    В состоянии равновесия жидкость и пар имеют одинаковую емпературу. Поэтому на первый взгляд безразлично, куда по-Лестить термометр — в жидкую фазу или в паровую. Однако это е так. Многочисленные измерения показали, что кипящая жидкость имеет несколько более высокую температуру, чем пар. 1ерегрев жидкости обусловлен главным образом двумя причи-ч1ами — влиянием гидростатического давления и действием поверхностного натяжения, за счет которого давление нара в образующемся пузырьке больше, чем над поверхностью жидкости. За счет перегрева температура кипящей жидкости может быть [c.41]

    Недостатки такой модели легко видны, даже если принять положение об обновлении поверхности, особенно при отсутствии поверхностного сопротивления. В этом случае можно принять, что на границе раздела фаз существует равновесие концентраций- и всех сил, действующих на поверхности раздела фаз, а также постоянство температуры. Одна из упомянутых сил, а именно межфазное натяжение, в определенной степени характеризует межфазную границу. Если на поверхностное натяжение влияет процесс массопередачи, равновесие сил будет нарушено и в результате возникает движение на межфазной поверхности. Такое движение, называедюе далее спонтанной межфазной конвекцией, передается к прилегающим слоям, что в свою очередь оказывает влияние на скорость массопередачи. В этом случае число Рейнольдса в фазе не определяет пщродинами-ческих условий в слоях, прилегающих к поверхности. Соответственно нарушается корреляция, выражаемая уравнением (1). Это утверждение справедливо по отношению к большинству зависимостей, предложенных для экстракции в системе жидкость — жидкость. Обычно такие корреляции оправдываются только в узком интервале изменяемых параметров п зависят не только от размера и типа аппарата, но также и от системы. [c.205]

    Если вместо того чтобы рассматривать состояние двух веществ, приведенных в соприкосновение в больших массах, мы сосредоточим внимание на явлениях, имеющих место, когда небольшое количество вещества в виде капли наносится на поверхность второго, мы получим дальнейшее подтверждение теории ориентации. Картина действия молекулярных сил, описанная ранее, проявится нри этом с удивительной ясностью. Предположим, что небольшое количество углеводорода или какого-нибудь другого вещества, не имеющего никакого сродства к воде, помещено на водную поверхность. При этом, как уже было отмечено иа стр 58, растекание не будет иметь места. Капля будет плавать па воде в виде круглой линзы, точная форма которой зависит от поверхностных натяжений и плотностей той и другой жидкости, ибо капля находится и под влиянием силы тяжести. Равновесие обязательно будет достигнуто, когда по толщине линзы будут расположены свыше тысячи слоев молекул. С другот стороны, если на поверхность воды, при комнатной температуре, нанести небольшое количество какого-либо вещества, содержащего группу, имеющую достаточное сродство к воде, например пентадециловую килоту, С54Н29СООН, то вещество это растечется по поверхности, по не растворится, ибо наличия одной карбоксильной группы недостаточно для того, чтобы сделать всю молекулу воднорастворимой. Так как порошки, подобные тальку, прилипают к пленкам органических кислот, то, [c.67]


Смотреть страницы где упоминается термин Влияние температуры на поверхностное натяжение жидкости: [c.463]    [c.31]    [c.523]    [c.74]    [c.331]    [c.391]    [c.158]    [c.163]    [c.303]    [c.51]    [c.373]   
Смотреть главы в:

Практикум по химии поверхностных явлений и адсорбции -> Влияние температуры на поверхностное натяжение жидкости




ПОИСК





Смотрите так же термины и статьи:

Поверхностное жидкость жидкость

Поверхностное натяжение жидкостей

Поверхностное от температуры



© 2025 chem21.info Реклама на сайте