Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состав и физико-химическая природа ПАВ

    Химический состав Физико-химическая природа Физиологическое действие [c.234]

    СОСТАВ И ФИЗИКО-ХИМИЧЕСКАЯ ПРИРОДА ПАВ [c.55]

    Накопление окислов железа и марганца на поверхности бактериальных клеток — результат двух взаимосвязанных процессов аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов на поверхности бактерий. Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и ЦПМ. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления для железа и марганца может достигать значений 10 —10 . [c.376]


    Спектры излучения, поглощения и отражения. При изучении люминесценции и физико-химической природы кристаллофосфоров спектроскопия оказывает особую услугу. О спектрах излучения и поглощения уже говорилось. По традиции спектральный состав излучаемого света (распределение лучистого потока по спектру) изображается чаще всего в виде кривых зависимости интенсивности люминесценции I от длины волны X. Однако, как вытекает из вышеизложенного, для теоретического анализа результатов измерений по оси абсцисс целесообразнее откладывать энергии квантов Е или частоты V. Чтобы установить связь между распределением по длинам волн /(Я) и по частотам 1 ) выделим в спектре участок меж- [c.53]

    Физико-химическая природа данного вещества, в том числе и полупроводника, целиком определяется его химическим строением. В настоящее время под химическим строением подразумевают совокупность энергетических, геометрических и квантовохимических характеристик вещества, как-то порядок, длина и энергия связи, распределение и пространственная направленность электронного облака, эффективные заряды и т. д. Но главным в учении о химическом строении является природа химической связи. Химическое- и кристаллохимическое строение в первую очередь -определяется характером межатомных связей всех атомов, входящих в состав данного вещества. [c.34]

    В них обсуждается физико-химическая природа процессов экстракции [1, 8], математический анализ экспериментальных данных, дающий возможность определить состав, константы устойчивости соединений, извлекаемых в органический растворитель, и выбрать наиболее благоприятные условия проведения экстракционного разделения [9—12]. Имеются специальные статьи, посвященные экстракции определенных групп металлов (13, 14] и применению наиболее употребительных реагентов [8, 15]. [c.263]

    При сушке солевых продуктов изменяется гранулометрический состав, что обусловлено физико-химической природой соли и режимом процесса. Это дополнительно усложняет картину, так что оценка уноса определяется данными испытаний на пилотных установках с последующим уточнением в процессе освоения промышленных агрегатов. Отметим, что узел пылеулавливания рассчитывают по объему газов, определяемого материально-тепловым балансом процесса величина уноса влияет на распределение продукта, выделяемого по ступеням очистки газа — этот показатель приходится уточнять при пусконаладочных работах. [c.25]


    Изучению кислородных соединений хрома посвящена работа Т. В. Роде [25]. Автор изучи.п физико-химическую природу, свойства, а также взаимные переходы кислородных и гидроокисных соединений хрома. Окислы хрома являются чрезвычайно сложными и своеобразными соединениями. В результате применения химических, микроскопических и физико-химических методов анализа (дифференциально термического с параллельным учетом объема выделяющихся газов, термогравиметрического и рентгеновского и построения диаграмм состав — температура) был решен ряд спорных вопросов химии окислов и гидроокислов хрома. Установлено число, состав и природа индивидуальных соединений и выявлено влияние температуры, времени нагревания и давления на природу различных фаз. Впервые детально изучена система хромовый ангидрид — окись хрома, дана характеристика промежуточных соединений, образующихся при термическом разложении хромового ангидрида. Ряд авторов [26—30] нашел при термической диссоциации хромового ангидрида только два или четыре промежуточных окисла, для которых даются различные составы, без уточнения их физико-химической природы. Они полагают, что при этом не получаются соединения определенного стехиометрического состава, а образуются два ряда непрерывных твердых растворов между составами СгОз.в — СгОз.з и СгО д— СгО ,,. Уточнение физико-химиче- [c.24]

    При применении других так называемых растворителей прибавляется еще влияние физико-химической природы этого вещества. Представляется целесообразным под этим углом зрения пересмотреть и результаты, полученные Кузнецовой. Не исключено, что при иных условиях осуществления процесса, т. е. при других гидродинамических режимах, состав продуктов согидролиза может заметно измениться. [c.179]

    Существующие лабораторные методы исследования нефтяных остатков позволяют определять групповой химический состав нефтепродукта. Идентифицировать же индивидуальные углеводороды в нефтяных фракциях очень сложно, а иногда невозможно ввиду их многообразия [2.1]. При разделении и исследовании наиболее тяжелой части нефти возрастает значение физических и физико-химических методов анализа, которые позволяют изучать ее природу и свойства, не вызывая существенных химических изменений в объектах исследования. [c.34]

    Во многих аналогичных ситуациях, когда прочность твердых тел различной природы, контактирующих с теми или иными средами, оказывается пониженной, эта объясняется уменьшением поверхностной энергии твердого тела в результате адсорбции, хемосорбции, смачивания и других физико-химических взаимодействий [254]. Такой подход, впервые предложенный П. А. Ребиндером, оказывается весьма плодотворным и при описании геологических процессов. Однако сложность природных систем и недоступность большинства из них. прямому наблюдению требует большой осторожности в выводах и тщательного учета всех взаимосвязанных факторов, от которых зависит возможность эффекта и степень его проявления. К этим факторам относятся химический состав твердого тела и среды, определяющий характер межатомных взаимодействий реальная структура (дефектность) твердого тела условия деформирования. [c.92]

    Несомненно, в природе процесс формирования и изменения солевого состава вод сложен, он зависит от многих факторов и, конечно, от температуры и давления. Изменение температуры и давления с глубиной погружения водоносных горизонтов сказывается на физико-химических процессах, протекающих в недрах земли и определяющих основные свойства подземных вод. Так же как и в породах, с увеличением давления и температуры химический состав вод из меняется, содержание одних ионов уменьшается, других, например хлора и кальция, возрастает. [c.21]

    Следовательно, прежде всего необходимо изучить природу сил, определяющих строение и структуру граничных слоев нефти, а также факторы, определяющие их свойства породообразующих минералов, компонентный состав нефти и ее физико-химические свойства. Такой комплекс исследований дает возможность научно обоснованно выбрать способ воздействия на пласт для рационального использования поверхностных сил в нефтяном коллекторе, создать метод, позволяющий перевести нефть граничного слоя в свободное состояние и тем самым увеличить нефтеотдачу пласта. Итак, основным содержанием физико-химической механики нефтяного пласта является изучение процессов, происходящих на границе раздела жидкостей и газа с породообразующими минералами. [c.4]

    На эффективность процесса НТА оказывают влияние следующие факторы температура и давление процесса состав исходного сырья и требуемое качество продуктов число теоретических тарелок в абсорбционных и ректификационных колоннах природа и физико-химические свойства используемого абсорбента и др. [c.138]


    Многообразие встречающихся в природе твердых горючих ископаемых обусловливает необходимость их систематизации, при которой они классифицируются по наиболее общим и характерным признакам. Одна из задач химии твердых топлив состоит в создании всеобъемлющей классификации. Требования, предъявляемые к современной классификации топлив, очень велики и разнообразны. Классификация должна быть основана на наиболее характерных признаках топлива, которые позволили бы потребителю без всяких затруднений выбрать наиболее подходящее по свойствам топливо. Обычно выбирают комплекс физико-химических характеристик (происхождение, физические свойства, технический и элементный состав, результаты обработки химическими реактивами и растворителями, отношение к термической переработке и др.). [c.53]

    Парафины и церезины, получаемые из нефтяных фракций, представляют собой сложную смесь компонентов различных химической природы п молекулярной массы, что обусловливает различие их физико-химических свойств, в том числе и температуры плавления — одного из основных показателей, определяющих области их применения. Так же важна структура входящих в их состав углеводородов от содержания нормальных изопарафинов и других компонентов зависят физико-химические, физико-мо-ханические и эксплуатационные свойства твердых углеводородов. [c.250]

    Выявление закономерностей термолиза нефтяного сырья приобретает особую важность, в частности, при разработке технологии производства и улучшения качества углеродных материалов и изделий на их основе. Основным вопросом при этом является изучение и регулирование физико-химических свойств реакционной массы, а также параметров фазовых переходов в процессе термополиконденсации нефтяных остатков и механизма формирования структуры углеродных материалов, связанных с изменением размеров и природы частиц, входящих в состав дисперсной фазы. Указанные процессы происходят при получении нефтяного пека, когда реакционная масса сырья представляет собой дисперсную систему, последовательные этапы превращений в которой определяют структурно-механические, волокнообразующие, связующие и другие свойства конечных продуктов термолиза. [c.131]

    В физической химии применяется несколько теоретических методов. Квантово-механический метод использует представления о дискретности знергии и других величин, относящихся к элементарным частицам. С его помощью определяют свойства молекул и природу химической связи на основе свойств частиц, входящих в состав молекул. Термодинамический (феноменологический) метод базируется на нескольких законах, являющихся обобщением опытных данных. Он позволяет на их основе выяснить свойства системы, не используя сведения о строении молекул или механизме процессов. Статистический метод объясняет свойства веществ на основе свойств составляющих эти вещества молекул. Физико-химический анализ состоит в исследовании экспериментальных зависимостей свойств систем от их состава и внешних условий. Кинетический метод позволяет установить механизм и создать теорию химических процессов путем изучения зависимости скорости их протекания от различных факторов. [c.5]

    Возможности препаративного метода сильно ограничены при исследовании таких многокомпонентных систем, как растворы, сплавы, стекла, шлаки. В подобных системах в зависимости от концентраций компонентов и внешних условий наблюдаются изменения физических и химических свойств. Установить природу этих изменений препаративным способом трудно, так как соединения, образующиеся в результате взаимодействия компонентов и обусловливающие новые качественные свойства системы, часто имеют неопределенный состав. Изучение взаимодействия веществ в многокомпонентных системах без выделения образующихся продуктов проводится методом физикохимического анализа. Основы этого метода заложены Д. И. Менделеевым, Ле-Шателье, Г. Тамманом и всесторонне развиты Н. С. Курнаковым (1912—1914). Сущность физико-химического анализа заключается в исследовании функциональной зависимости между численными значениями физических свойств равновесной химической системы [c.166]

    Метод физико-химического анализа заключается в следующем. Измеряют какое-нибудь физическое свойство раствора или расплава (плотность, вязкость, температуру плавления, давление пара, поверхностное натяжение, электропроводность, показатель преломления, диэлектрическую проницаемость и т. д.). Последовательно изменяя состав, получают таблицу числовых данных измеряемого свойства. С помощью этих данных строят диаграмму состав — свойство. Изучают геометрические особенности диаграмм состав — свойство для растворов различных компонентов и ищут зависимость между геометрическими особенностями такой диаграммы и природой раствора. [c.167]

    Химическая связь и валентность. Понятие о химической связи является одним из основополагающих в современной химической науке. Физико-химическая природа вещества целиком определяется его химическим или кристаллохимическим строением. В настоящее время под химическим и кристаллохимическим строением понимают совокупность энергетических, геометрических и кваитовохимических характеристик вещества порядок, длина, кратность и энергия связи, распределение и пространственная направленность электронного облака, эффективные заряды атомов и т. и. Но главное в учении о химическом и кристаллохимическом строении вещества — химическая связь. Химическое и кристаллохимическое строение в первую очередь определяется характером межатомных связей всех атомов, входящих в состав данного вещества. [c.73]

    Существование большой группы интерметаллических соединений разнообразного качественного и количественного состава, но сходных по физико-химической природе, обусловлено влиянием фактора электронной концентрации. Все эти фазы обладают металлическим характером и кристаллизуются в структурах трех типов / -латуни (ОЦК), 7-латуни (сложная кубическая струк гура с 52 атомами в элементарной ячейке) и е-латуни (ГПУ). Тип кристаллической структуры опре-д( ляется не свойствами взаимодействующих компонентов, а так называемой формальной электронной концентрацией (ФЭК), т.е. отношением общего числа валентных электронов (соответствующих номеру группы) к числу взаимодействующих атомов в формульной единице. Эти фазы называются электронными соединениями Юм-Розери. Обычно электронные соединения образуются в системах, содержащих, с одной стороны, элементы 1В- и УП1В-групп, а с другой — металлы ПВ-, П1А-И 1УА-групп. Эти соединения не подчиняются классическим прави.лам валентности, и их состав определяется лишь формальной электронной концентрацией. Трем видам электронных соединений соответствует определенная формальная электронная концентрация. Так, для ОЦК-структуры /3-латуни ФЭК = = 21/14 = 3/2 (числитель — общее число валентных электронов, знаменатель — число атомов в формульной единице соединения). Сложная структура 7-латуни определяется величиной ФЭК, равной 21/13, а структуре е-латуни (ГПУ) отвечает ФЭК = 21/12 = 7/4. Примеры типичных электронных соединений в различных системах приведены в табл. 20. Обращает на себя внимание существенно различный состав соединений Юм-Розери, кристаллизующихся в одинаковом [c.219]

    Среди других факторов, влияющих на структурно-механические свойства суппозиториев, следует отметить зависимость этих свойств от физико-химической природь[ и количественных соотношений всех компонентов, входящих в состав суппозиториев. Многие лекарственные вещества вводят в состав препарата в незначительных количествах. Однако при разработке техгюлогии суппозиториев необходимо учитывать алия-ние природы даже небольших количеств лекарственньсх веществ на структурно-механические показатели суппозиториев, которое может быть существенным, причем как в сторону увеличения, так и в сторону уменьшения реологических показателей. [c.431]

    Было установлено, что скорость выращивания одноатомных веществ (металлов и элементарных полупроводников) составляет примерно 100 мм/ч двухатомных (оксидов, фторидов, сульфидов и др.) — порядка 10 мм/ч, а многоатомных (гранатов, вольфраматов, молибдатов и др.) — порядка 1 мм/ч. Таким образом, к числу лимитирующргх кристаллизацию факторов относятся не только факторы, обусловленные физической природой (кинетикой на фронте роста и тепломассопереносом), но также факторы физико-химической природы, ответственные за химический состав и реальную структуру монокристаллов. [c.8]

    Для установления физико-химической природы органического вещества был проведен диализ по фракциям. Он проводился в целлофановых мешочках в течение 10 суток и контролировался определениями Сорг. и Nopr.. Было выяснено, что основная часть водорастворенного органического вещества ( =90%) проходит через полупроницаемую перегородку, т. е. является низкомолекулярной. В то же время щелочная фракция содержала значительно больше веществ, не проходящих через полупроницаемую перегородку (13,3%), по сравнению с ацетоновой (5,8%). В этом органическом веществе содержание Nopr. составило 66% от первоначального его содержания. По-видимому, органический азот входит в состав наиболее сложных по своей структуре молекул, не проходящих через полупроницаемую перегородку при диализе. [c.79]

    В соответствии с современными физико — химическими пред — стазлениями о сущности катализа, катализатор и реагирующие веп(ества следует рассматривать как единую каталитическую реакционную систему, в которой химические превращения испытывают не только реактанты под действием катализатора, но и катализатор при взаимодействии с реагентами. В результате такого взаимного воздействия в реакционной системе устанавливается стационарный состав поверхности катализатора, определяющий его каталитическую активность. Отсюда следует, что катализатор — не просто место осуществления реакции, а непосредственный участник химического взаимодействия, и его каталитическая активность обусловливается химической природой катализатора и его химическим сродством к реактантам. [c.87]

    Говоря о микроэлементных соединениях нефти, необходимо иметь в виду условность этого термина, под которым понимают все нефтяные вещества, в состав которых входит любой элемент, кроме пяти основных. Естественно, что многообразие свойств элементов предопределяет возможность образования соедипений самых разнообразных типов и физико-химических характеристик, и, паверное, единственной извинительной причиной, позволяющей объединять одним термином все множество содержащих микроэлементы веществ, являются наши микроскопические знания об их истинной природе и составе. [c.160]

    Очистка предполагает удаление зафязнений с поверхности до определенного уровня чистоты. Для этого используют механический, физический, химический, физико-химический и химикотермический способы. Чтобы ускорить очистку, применяют разные способы интенсификации повышение температуры и давления очищающей среды, вибрационную активацию очищающей среды и пр. Скорость очистки находят экспериментально при определенных условиях. На нее влияют следующие факторы природа зафязнения (химический состав, прочностные и реологические свойства) количество зафязнений (начальная зафязненность поверхности, количество зафязнений, допустимое на поверхности после очистки, равномерность распределения по поверхности остаточной зафязненности) вид поверхности (материал, шероховатость, размеры и конфигурация) очищающая среда (состав, концентрация, температура) характер и параметры взаимодействия очищающей среды с поверхностью (скорость и размер потока, обусловленные конструкцией моечной машины). [c.27]

    Химические структуры асфальтенов чрезвычайно разнообразны от соединений с преобладанием алифатических элементов в молекулах до высококонденсированных ароматических систем - и от чистых углеводородов до гетероциклических соединений с различными полярными группами. Поэтому асфальтены рассматривают как класс веществ, объединенных не по химической природе, а по растворимости. Учитывая, что свойства нефтевмещающих пород и компонентный состав нефти изменяются и в пределах одной залежи, а также принимая во внимание физикохимическое воздействие пластовых вод, контактирующих с нефтью, и биохимические процессы, можно предполагать, что и физико-химические свойства асфальтенов различны. [c.9]

    Ао,А1 - эмпирические коэффициенты, слабозависящие от природы веществ Отдельные характеристики методик определения физико-химических свойств многокомпонентных систем на основе ГЖС приведены в табл.4.5. Нами установлено, что каждому физико-химическому свойству соответствует несколько аналитических длин волн, на которых с удовлетворительной точностью выполняется соотношение (4,5). Стандартное отклонение в определении свойств не превышает 5-8 %, коэффициент корре.аяции при этом составляет 0,85-0,99. Из данных табл.4.5 видно, что ПКС выполним в очень сложных веществз5аПредло-жены экспрессные методы, позволяющие определять, по одной характеристике - коэффициентам поглощения, практически все трудно измеряемые обычным путем свойства. Например, молекулярную массу, вязкость, элементный состав, показатели термостойкости, температуру хрупкости, концентрацию парамагнитных центров, энергию активации вязкого течения, энергию когезии, температуру вспышки, вязкость, гюказатели реакционной способности и т. д. По сравнению с общепринятыми методами время определения свойств сокращается до 20-25 минут. [c.74]

    Существующие методики изготовления искусственных пористых сред, применяемых в лабораторных исоледованиях, отличаются в основном состав ом связующего элемента. В качестве цементирующего веществе обычно используется цемент, жидкое натриевое стекло, бакелитовый лак, различные смолы, высокомолекулярные полимеры и др. Получаемые при этом пористые среды имеют один существенный недостаток-физико-химическив свойстве их внутренней поверхности отличаются от природы поверхности пористых сред. [c.5]

    Как известно, нефть и нефтепродукты содержат в своем составе углеводородные и неуглеводородные компоненты различной природы, молекулярной массы и строения. Рассматривая химический состав нефтей и нефтепродуктов, можно условно выделить четыре составляющие их группы низкомолекулярные и высокомолекулярные углеводороды, смолисто-асфальтеновые вещества неуглеводородного характера, ге-тероатомные соединения. Физико-химические свойства нефтей и нефтепродуктов во многом зависят от количественного содержания в них компонентов указанных составляющих групп, их качественных характеристик и степени взаимодействия. [c.35]

    Принципиально задача получения высокоплавких пеков свсдится к получению смеси ПЦ.а-углеводородов и гетероорганических соединений с конденсированными ядрами, обладающей требуемыми ММР, ароматичностью. реакционной способностью, физико-химическими и струтчтурно-реологическими свойствами. Технически контролируемыми свойствами такой смеси являются температура размягчения, групповой состав, коксуемость, выход летучих, сернистость, зольность и влажность. Определённому набору значений этих показателей качества в принципе соответствует большое число смесей углеводородов и гетероорганических соединений, которые могут быть получены из любых горючих ископаемых, биомассы, их дериватов, промышленных и бытовых органических отходов многими способами. Факторами, ограничивающими число таких множеств, являются природа органического сырья и технология его переработки в пек. Однако и в этом случае число таких множеств (смесей) остаётся достаточно большим, а принятая технология в рассматриваемом аспекте остаётся чёрным ящиком, превращающим получение пека с заданными свойствами в серьёзную проблему. [c.124]

    В самом деле, о природе твердого вещества обычно судят, сопоставляя данные трех видов анализа химического, физико-химического и рентгеноструктурного. Химический анализ позволяет определить состав вещества физико-химический — связь свойств вещества с его составом рентгеноструктурный — структуру вещества. Допустим, что при исследовании ряда образцов какого-нибудь твердого вещества оказывается, что в состав всех этих образцов входят одни и те же элементы и притом в таких весовых отношениях, которые находятся в определенных, довольно узких пределах что различные свойства этих образцов связаны некоторыми взаимосогласующимися закономерностями с изменением их состава в тех же пределах что кристаллическая структура данных образцов одна и та же, хотя размеры кристаллических ячеек закономерно изменяются с изменением состава образцов. [c.170]

    Для изучения свойств соединений часто получают их в чистом состоянии, применяя для этого кристаллизацию, выпаривание, сублимацию, фильтрование, перегонку и другие операции. Это—приемы препаративного метода исследования. Использование этого метода ограничено. С его помощью не всегда удается исследовать растворы, сплавы, стекла. Часто встречаются и экспериментальные трудности например, отделить кристаллы от маточного раствора становится сложным, если он обладает большой вязкостью, а соль разлагается под действием растворителей, служащих для отмывания раствора. Еще труднее отделить твердое вещество от жидкого при высоких температурах или разделить сплав на составные части. Для того чтобы выяснить характер взаимодействия веществ, т. е. узнать, дают ли они между собой механические смеси, растворы или химические соединения, необходимо /ибо отделить их друг от друга, либо применить другой метод, позволяющий установить природу и состав образующихся в системе соединений, не прибегая к их выделению и анализу, а именно метод физико-химического анализа. С его помощью устанавливают зависимость между изучаемым свойством и составом системы и выражают результаты исследования в виде диаграммы состав—свойство. Это целесообразнее, чем воспроизведение результатов опытов в виде таблиц (они недостаточно наглядны и требуют интерполяции) или формул (их составление трудоемко и не всегда осуще твимо). А главное — анализ диаграммы состав—свойство позволяет определить число и химическую природу фаз, г]заницы их существования, характер взаимодействия компонентов,наличие соединений, их состав и относительную устойчивость — словом, получить обширную и содержательную информацию. [c.254]

    Для ТОГО чтобы выяснить характер взаимодей Ггвия веществ в смеси, т. е. узнать, дают ли они между собой механические смеси, растворы или химические соединения, использук>т метод физико-химического анализа. С его помощью устанавливают зависимость между изучаемым свойством и составом системы, результаты исследования выражают в ви 1е диаграммы состав - свойство. Анализ диаграммы состав - свойство позволяет определить число и химическую природу фаз в различных смесях, г(1аницы существования фаз, характер взаимодействия компонентов, наличие соединений, их состав и относительную устойчиво<ть. [c.305]


Смотреть страницы где упоминается термин Состав и физико-химическая природа ПАВ: [c.23]    [c.381]    [c.30]    [c.193]    [c.129]    [c.213]    [c.106]    [c.39]    [c.24]    [c.46]   
Смотреть главы в:

Основы физико-химической механики -> Состав и физико-химическая природа ПАВ




ПОИСК





Смотрите так же термины и статьи:

РНК химическая природа



© 2025 chem21.info Реклама на сайте