Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный анализ в газовой хроматографии

    Следует учитывать, что аминокислоты сильно различаются по своей структуре и отдельные реакции не всегда применимы ко всем из них, а именно некоторые реакции применимы только к алифатическим соединениям. Кроме того, при различных реакциях наблюдаются в значительной степени нежелательные побочные процессы максимальные достигаемые при этом выходы воспроизводятся с трудом и не позволяют точно количественно определять аминокислоты. Однако как качественный метод анализа газовая хроматография наряду с хроматографией на бумаге занимает важное положение в аналитической химии аминокислот. [c.271]


    Существуют две основные принципиально различные схемы хроматографического анализа. Первая, которой в наибольшей степени соответствует термин элюентная, соответствует случаю, когда после хроматографического разделения по элюентной схеме последующее определение разделенных веществ осуществляется в потоке элюата, выходящего из колонки. Чтобы не вносить дополнительной терминологической путаницы, эта схема хроматографического анализа в дальнейшем будет рассматриваться как традиционная. Вторая схема — хроматографическое разделение с определением разделенных веществ непосредственно в хроматографической колонке или в плоском слое. Наибольшее распространение нашла первая схема, причем на начальном этапе развития хроматографии стадии разделения и послед)тощего определения веществ были разнесены во времени и в пространстве. Для определения каждого из выделенных компонентов мог применяться свой метод определения в отдельных фракциях элюата, но при этом хроматографический анализ был лишен своих основных достоинств — универсальности и экспрессности. Качественным скачком в развитии аналитической хроматографии явилось создание газового хроматографа, в котором были совмещены принципы хроматографического разделения и неселективного детектирования разделенных веществ непосредственно в потоке подвижной газовой фазы, называемой газом-носителем. Подобно тому, как создание газового хроматографа привело к появлению первого важнейшего раздела в науке о хроматографических методах анализа — газовой хроматографии, решение проблемы непрерывного детектирования веществ в потоках жидких фаз способствовало появлению и развитию второго аналитического направления — жидкостной хроматографии. [c.180]

    Кроме качественного разделения, газовая хроматография при высоких температурах применялась для полуколичественного анализа. Состав ряда высококипящих смесей определялся методом [c.80]

    Непосредственное присоединение пиролитической приставки газовому хроматографу имеет ряд преимуществ 1) высокая эффективность разделения и как результат быстрый, точный и очень детальный анализ продуктов пиролиза 2) высокая чувствительность пламенно-ионизационного детектора, что позволяет использовать микрограммовые количества вещества для пиролиза 3) идентификация продуктов пиролиза по характеристикам удерживания или масс-спектрам, если используется газовый хроматограф и масс-спектрометр 4) возможность отбора отдельных продуктов пиролиза, позволяющая проводить их дальнейшее изучение и анализ. Газовый хроматограф с пиролитической приставкой может применяться как для качественного, так и для количественного анализа, а иногда и для определения физических постоянных пиролитического процесса [15]. [c.230]


    Метод газовой хроматографии как аналитический метод, за последние годы находит все большее применение в теоретической и прикладной геохимии природных газов, нефтей и рассеянного органического вещества. Использование этого метода при исследованиях углеводородного состава каустобиолитов дает возможность в сравнительно короткие сроки получить информацию о качественном составе исследуемого объекта. Помимо быстроты анализа газовая хроматография дает во многих случаях значительно больший объем информации, чем рутинные аналитические методы, применявшиеся в геохимии [46]. [c.8]

    Анализ исходных алкилбензолов (сырья) и продуктов каталитической реакции проводится на лабораторном газовом хроматографе ЛХМ-ВМД модель 3. Прибор предназначен для количественного и качественного анализа газовых и жидких многокомпонентных смесей органического и неорганического происхождения с температурами кипения до 300° С. Принцип устройства и работы хроматографа, а также методы хроматографического анализа смеси алкилбензолов изложены в работе 37. По показаниям хроматографа проводят расчет концентраций компонентов анализируемых смесей (исходного сырья и продуктов дегидрирования алкилбензолов) на основании полученных хроматограмм. [c.157]

    Определяют качественный состав анализируемого газа на приборе для общего анализа, газовом хроматографе, или на том же масс-спектрометре или комбинацией этих методов. [c.263]

    Устройство газового хроматографа и получение хроматограммы. Качественный и количественный анализ [c.547]

    Качественный газохроматографический анализ. В газовой хроматографии параметры удерживания какого-либо соединения в смеси при определенных условиях характеризуют природу этого соединения, поэтому параметры удерживания могут быть использованы для целей идентификации. [c.190]

    В практике качественного газохроматографического анализа используют следующие способы идентификации компонентов 1) сравнение параметров удерживания неизвестного вещества и эталонного соединения при идентичных условиях хроматографирования 2) применение графических или аналитических зависимостей между характеристиками удерживания и физико-химическими свойствами веществ (молекулярной массой, температурой кипения, числом углеродных атомов или функциональных групп и т. д.) 3) сочетание газовой хроматографии с другими инструментальными методами 4) применение селективных детекторов. [c.190]

    Метод термического разложения нелетучих компонентов неф тей в температурном интервале 600—900° С с последующей качественной и количественной характеристикой газообразных и жидких продуктов пиролиза методом газо-жидкостной хроматографии впервые применили геохимики [13—15]. Достоинствами этого метода являются его экспрессность и возможность проведения анализа с малыми количествами образцов. После удачного решения аппаратурно-методических вопросов [15] и установления на примере исследования самых различных каустобиолитов (в том числе и остаточной части нефтей) строгой корреляции между происхождением органической основы образца и содержанием бензола р продуктах его глубокого термического разложения этот метод вошел в практику геохимических исследований. Кроме того, реакция термической деструкции в сочетании с методами газовой хроматографии успешно применяется для изучения таких материалов, как уголь и различные полимеры [16—18]. В основе всех этих методов — исследование доступных для анализа (ГЖХ, масс-спектрометрия и др.) продуктов термического разложения высокомолекулярных соединений. [c.168]

    Ряд монографий и обзоров посвящены истории развития газовой хроматографии [4—6], в том числе истории хроматографического анализа нефти и нефтепродуктов [7], основам хроматографического разделения [8—11], качественного [12, 13] и количественного [14, 15] газохроматографического анализ-а, капиллярной хроматографии [16—18], приборам для хроматографии [19—20], автоматизации обработки хроматографической информации и использованию ЭВМ [21—23]. Приведены сведения о хроматографических материалах-носителях и стационарных жидкостях [24— 27], об относительных объемах и индексах удерживания углеводородов на различных неподвижных фазах [12, 28]. Применению газовой хроматографии для анализа нефти, нефтепродуктов, углеводородных смесей посвящены работы [29—33], а в нефтехимии — [34]. [c.115]

    Функция колонки в газовой хроматографии сводится лишь к разделению смеси на индивидуальные компоненты. Определение их качественного состава может быть выполнено за пределами колонки. Существует два способа качественного анализа разделенной в хроматографической колонке смеси по характеристикам удерживания и с использованием других аналитических приемов. В первом случае на выходе из хроматографической колонки ком- [c.48]


    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Работа 24. Качественный и количественный анализ смеси угле водородов на газовом хроматографе [c.7]

    Смесь углеводородов вводят в газовый хроматограф, где она перево-дится в парообразное состояние и разделяется на колонке. Компоненты смеси после разделения регистрируются детектором. Сигнал детектора фиксируется регистрирующим прибором и выходная кривая (хроматограмма) записывается самописцем. Качественный анализ основан на определении времени выхода компонентов, которое при постоянном режиме работы хроматографа зависит от природы компонентов. Количественный анализ проводится путем измерен ния площади пиков соответствующих компонентов на хроматограмме. [c.355]

    Если известны удерживаемые объемы или соответственно времена удерживания веществ, их можно идентифицировать методом газовой хроматографии (качественный анализ). Для гомологического ряда органических соединений, например парафинов, спиртов, сложных эфиров и т. д., установлена линейная зависимость между логарифмами значений удерживаемых объемов и числом групп СНг в молекулах, что также дает возможность провести качественный анализ веществ внутри каждого гомологического ряда. [c.245]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]

    Применение, Метан квалификации чистый для анализа применяется в качестве эталона для калибровки хроматографов и спектральных приборов, а также в качестве стандартного вещества при качественном и количественном анализе газовых смесей, например, в анализе воздуха угольных шахт с помощью переносных газоанализаторов, в анализе воздуха при разведке месторождений не и и природного газа и т. д. [c.220]

    Удерживаемый объем Уг и время удерживания /г, как уже говорилось ранее, являются качественными характеристиками хроматографируемых веществ в определенных условиях проведения опыта. Качественный анализ основан на измерении и сопоставлении этих величин. В современной газовой хроматографии существует несколько способов идентификации компонентов в сложной смеси. [c.214]

    ГАЗОВЫЙ АНАЛИЗ — анализ газовых смесей с целью установления их качественного и количественного состава. Методы Г. а. основываются на химических, физико-химических и физических свойствах компонентов газовой смеси, особенно на различных температурах конденсации и кипения. Для выполнения Г. а. применяют приборы ручные и автоматические газоанализаторы, масс-спектрометры, хроматографы и др. [c.63]

    Контролируемое термическое разложение, качественный анализ (брутто-состав), определение микростроения из анализа продуктов разложения, особенно при сочетании с методами газовой хроматографии и масс-спектрометрии [c.416]

    Качественное и количественное определение содержания низкомолекулярных примесей в сочетании с пиролизом и газовой хроматографией качественный и количественный анализ (ограниченное применение для анализа высокомолекулярных веществ) [c.416]

    Качественный анализ в газовой хроматографии проводится на основании измерения времени (или объемов) удерживания (чаще определяют отношение времени удерживания вещества Туд к времени удерживания стандартного вещества Ту д). [c.243]

    Для групповой идентификации применяют реакционную газовую хроматографию (превращение определенных групп соединений, их удаление из анализируемой смеси, элементарный анализ, качественные реакции в сочетании с хроматографическим анализом) анализ на селективных фазах или на приборах с селективными детекторами, имеющими повышенную чувствительность к соединениям определенных классов. [c.97]

    Осуществление химических реакций в самой хроматографической колонке или в реакторах, составляющих с ней единую систему (реакционная газовая хроматография), открывает дополнительные возможности качественного анализа смесей неизвестного состава. Для химиков-органиков особый интерес представляет препаративная реакционная газовая хроматография, совмещающая в одностадийном процессе синтез (с вы.ходами близкими к количественным) разнообразных соединений и выделение их в индивидуальном виде. [c.9]

    Совмещение достоинств газовой хроматографии и других современных инструментальных методов анализа (некоторые виды спектроскопии, рефрактометрия, кулонометрия) в едином аппаратурном оформлении открывает неограниченные перспективы качественного и количественного исследования весьма сложных по составу смесей соединений, [c.10]

    Индексы удерживания являются весьма информативной и удобной формой представления данных по относительному удерживанию органических соединений самых различных классов и в настоящее время с успехом используются при решении даже таких сложных задач, как, например, идентификация компонентов нефти или исследование запаха пищевых продуктов. Их можно применять, в частности, и для расчета абсолютных параметров — удельных удерживаемых объемов идентифицируемых соединений при любых условиях анализа, если в тех же условиях определены удельные удерживаемые объемы не менее четырех н-алканов, в том числе служащих в качестве стандартов при измерении индексов [391. Такой косвенный путь нахождения Vg (в сравнении с весьма трудоемким экспериментальным определением) существенно расширяет возможности их использования в качественном газохроматографическом анализе. Обсуждению самых разнообразных аспектов применения индексов удерживания Ковача в аналитической газовой хроматографии посвящен обзор [401. [c.168]

    Предел обнаружения масс-спектрометра имеет такой же порядок, как и других применяемых в газовой хроматографии детекторов (до г/с), но в специальных режимах работы он может быть значительно понижен (до г/с) . Линейный диапазон масс-спектрометра как детектора зависит от способа ионизации и может достигать 2—4 порядков, что меньше, чем у ионизационно-пламенного детектора, но значительно больше, чем, например, у детектора электронного захвата. В некоторых случаях хромато-масс-спектрометры после предварительной градуировки одним из известных способов используют для количественных определений, но основное их назначение — качественный анализ неизвестных компонентов анализируемых образцов, Главная сложность количественного анализа на таких приборах — необходимость контроля и обеспечения постоянства гораздо большего числа рабочих параметров, чем на обычных хроматографах. На практике для получения количественных данных значительно проще провести параллельный анализ однотипного образца на хроматографе с ионизационно-пламенным детектором. [c.199]

    Цель работы. Познакомиться с приемами реакционной газовой хроматографии в качественном анализе многокомпонентной смеси на примерах вычитания и сдвига пиков. [c.305]

    ТАБЛИЦА 1У.23. Результаты качественного анализа смесей неизвестного состава, выполненного с помощью реакционной газовой хроматографии [c.308]

    Из хроматографических методов в качественном анализе чаще всего применяют тонкослойную, бумажную, осадительную, газовую адсорбционную, газожидкостную, высокоэффективную жидкостную хроматографию (жидкостную хроматографию высокого давления). [c.591]

    В литературе можно найти многочисленные примеры применения газовой хроматографии как в аналитических целях, так и для определения различных физико-химических величин. Ниже кратко рассмотрены лишь некоторые вопросы качественного и количественного газохроматографического анализа. При этом основное внимание обращено на применение индексов удерживания, методы калибровки и вычисление площадей пиков. [c.146]

    Нарисуйте общий вид хроматофаммы в газовой хроматографии. Какую информацию можно получить из нее для качественного и количественного анализа.  [c.309]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    Качественный и количественный анализ. Широкое использование газовой хроматографии как универсального метода качественного анализа обусловлено следующими факторами высокой разделяющей способностью хроматографической колонки связью величины удерживания с термо-дгаамическими функциями сорбции возможностью сочетания газовой хроматографии с другими физико-химическими и химическими методами идентификации использованием селективных детекторов. [c.96]

    При повышенной температуре колонки или увеличенной скорости газа-носителя удобную для качественных и количественных измерений форму приобретут на хроматограмме пики госледних выходящих из колонки компонентов. Общее время анализа будет небольшим, однако наиболее летучие (наименее удерживаемые) компоненты выйдут из колонки частично или полностью неразделенными. Вид подобных хроматограмм предст 1влен на рис. 1.2. К настоящему времени найдены пути технического решения проблемы увеличения температуры или скорости газа-носи-теля в ходе анализа по заданной программе, что намного расширило границы практического использования газовой хроматографии. [c.8]

    Из таких комбинированных методов, являющихся в настоящее время наиболее информативными при качественном анализе сложнейших смесей неизвестного состава, следует особо зыделить два — хромато-масс-сиектрометрию и сочетание газовой хроматографии с ИК-фурье-спектроскопией. [c.10]

    Газовая схема хроматографа = 2 = 3 для экспериментального осуще-ствления этого приема качественного анализа может быть собрана в двух вариантах с параллельным (рис. 111.13, о) и последовательным (рис. 111.13, б) размещением детекторов относительно колонки. Сигнал каждого детектора после усиления (или ослабления) подается на один двухканальный или два одноканальных самописца. [c.197]

    Поэтому, несмотря на успехи, достигнутые мри исследовании состава разнообразных объектов промышленного н природного происхождения гибридными инструментальными методами (хромато-масс-спектрометрия и газовая хроматография — ИК-фурье-спектрометрия), при решении задач повышенной сложности (анализ микропримесей в окружающей среде, оценка качества натуральных пищевых продуктов и их синтетических аналогов и т. п.) необходимо комплексное использование результатов всего арсенала изложенных выше средств и методов качественного газохроматографического анализа, как показано на схеме И 1.1. [c.211]

    Методы газовой адсорбционной (ГАХ), газожидкостной (ГЖХ) и высокоэффективной жидкостной (ВЭЖХ) хроматограф подробно рассматриваются при изложении инструментальных методов количественного анализа. Здесь мы кратко укажем лишь на принципиальные возможности использования этих методов в качественном анализе. [c.591]


Библиография для Качественный анализ в газовой хроматографии: [c.175]   
Смотреть страницы где упоминается термин Качественный анализ в газовой хроматографии: [c.354]    [c.331]   
Смотреть главы в:

Задачник по аналитической химии -> Качественный анализ в газовой хроматографии

Новый справочник химика и технолога Часть 1 -> Качественный анализ в газовой хроматографии




ПОИСК





Смотрите так же термины и статьи:

Анализ газовый

Анализ качественный

Газовая хроматография качественный анализ смесей

Газовая хроматография хроматографы

Качественный анализ в газовой и высокоэффективной колоночной жидкостной хроматографии

Качественный анализ с использованием приемов реакционной газовой хроматографии

Качественный и количественный анализ смеси углеводородов на газовом хроматографе

Мерритт. Качественный анализ функциональных групп в веществах, разделяемых методом газовой хроматографии

Применение реакционной газовой хроматографии для качественного анализа

Устройство газового хроматографа и получение хроматограммы. Качественный и количественный анализ

Хроматограф газовый

Хроматография анализ

Хроматография газовая

Хроматография газовая качественный и количественный анализ



© 2025 chem21.info Реклама на сайте