Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предсказание вторичной структуры по аминокислотной последовательности

    Глава 6 Предсказание вторичной структуры по аминокислотной последовательности [c.129]

    Предлагаемые корреляционные методы, или, как их обычно называют, методы предсказания вторичной структуры по аминокислотной последовательности (сокращенно методы предсказания ), можно разбить на две категории вероятностные и физико-химические. К первой категории относятся методы, устанавливающие закономерности исключительно на основе статистического анализа исходных рентгеноструктурных данных. Физико-химические методы используют дополнительно (или исключительно) иную структурную информацию. Очевидно, что различие между этими двумя категориями не может быть очень четким и возможны промежуточные случаи, отнесение которых к первой или второй категории произвольно. [c.131]


    В работах Птицына [147, 148] на основании статистического анализа аминокислотного состава и последовательности участков полипептидной цепи с различной вторичной структурой были предложены классификация аминокислот и метод предсказания вторичной структуры глобулярных белков по их первичной структуре. Оказалось возможным приписать каждой аминокислоте некоторую индивидуальную способность встраиваться в спиральные участки ( спиральный потенциал ), в первом приближении не зависящую от ее соседей в цепи. [c.250]

    Ограниченность изложенных эмпирических методов предсказания связана с тем, что необходимая информация касается характера только непосредственного окружения аминокислотного остатка и не затрагивает дальних взаимодействий. Можно повысить точность предсказания вторичной структуры до 70%, если проводить сравнительный анализ близких по вторичной структуре последовательностей. [c.212]

    Любопытный эксперимент по проверке предсказательной способности различных эмпирических корреляций между первичной и вторичными структурами был проведен с аденилаткиназой. Исследователям, занимающимся разработкой предсказательных схем, были разосланы данные по аминокислотной последовательности белка с предложением определить его структурные особенности. При этом никто из них не был информирован заранее о результатах расшифровки трехмерной структуры аденилаткиназы. Полученные ответы с предсказаниями вторичной структуры белка были опубликованы вместе с экспериментальными данными [102]. Сопоставление теоретических и опытных данных, приведенных в табл. II.4, показывает, что ни один из методов определения вторичных структур не может считаться надежным. [c.261]

    Для нуклеиновых кислот решение этой задачи проше, чем для белков. В этом вопросе имеются значительные успехи. Основные преобладающие взаимодействия связаны здесь с образованием уотсон-криковских пар. Возможность такого спаривания непосредственно видна из рассмотрения первичной структуры. Чтобы рассчитать энергию спаривания при той или иной последовательности оснований, нужно учесть параметры менее 40 термодинамических взаимодействий. Этот вопрос будет рассмотрен в гл.23. В случае белков задача оказывается значительно более трудной. Аминокислотная последовательность сама по себе не дает таких простых следствий, как правило комплементарности при спаривании оснований. Число параметров термодинамических взаимодействий, которые должны учитываться, оказывается значительно больше. Это обусловлено тем, что число разных аминокислотных остатков равно 20, в то время как число разных нуклеотидов — всего 4. Несмотря на эти трудности, существуют, как мы покажем, более или менее надежные способы предсказания вторичной структуры белков. [c.26]


    Предел точности полуэмпирических методов пока трудно установить. Следует также помнить, что точное предсказание вторичной структуры белковой молекулы необходимо, но не достаточно для определения трехмерной конформации. Очень трудно представить себе, как зависит пространственная организация молекулы белка от тех структур, о которых говорят как о неупорядоченных (речь идет о структурах, которые нельзя отнести к а-спиралям, )8-слоям и т.д.). Неизвестно также, какую роль в формировании трехмерной конформации играют взаимодействия между далеко отстоящими вдоль белковой цепи остатками. Все эти факторы необходимо учесть, прежде чем приступать к предсказанию полной трехмерной структуры белка, исходя из его аминокислотной последовательности. [c.283]

    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]

    Развитый в работах Ф. Коэна, М. Стернберга и соавт. [156-158, 168, 169, 171] подход не опирается на общую физическую теорию и единый метод расчета, устанавливающие логические и количественные связи между аминокислотной последовательностью белка и координатами атомов нативной конформации молекулы. Каждая стадия комбинированного подхода следует своим эмпирическим правилам, корреляционным соотношениям, предсказательным алгоритмам и методологическим приемам. Объединяющим (скорее, отягощающим) все его составные части началом служит традиционное, сложившееся еще в 1950-е годы, представление о пространственной организации белковой глобулы в виде ансамбля регулярных вторичных структур (концепция Полинга и Кори) с внутренним гидрофобным ядром и внешней гидрофильной оболочкой (концепция Козмана). Несмотря на отсутствие заметного прогресса и разочаровывающие результаты предсказаний, стремление решить проблему пространственной организации белков на основе эмпирического подхода не ослабевает ни в 1980-е, ни в 1990-е годы [107. Гл. 6, 7]. Оставаясь на тех же идейных позициях, работы последнего десятилетия приобретают большее разнообразие. [c.510]

    В последние годы интерес к поиску простых статистических корреляций между аминокислотной последовательностью и вторичными структурами не ослабевает. По-прежнему предпринимаются попытки создать новые методы предсказания, усовершенствовать предложенные ранее, реанимировать забытые. Принципиальных изменений в развитии этого направления, однако, не происходит. На протяжении вот уже трех десятилетий остается неизменной стратегия поиска, покоящаяся на вере в возможность эмпирическим путем и на основе вторичных структур решить одну из фундаментальных проблем молекулярной биологии. Поэтому неудивительно, что практически неизменной осталась и надежность предсказания. В табл.IV.20 представлены показатели качества алгоритмов, разработанных с 1974 г. по 1993 г. и предсказывающих три конформационных состояния аминокислотных остатков (а-спиральное, -структурное и неупорядоченное), В качестве количественной характеристики использован показатель Q3, равный сумме долей положительных и отрицательных правильных предсказаний трех форм остатков (со -t- х). [c.516]

    Метод статнстической информации. Это целое семейство процедур, в которых для отбора конформаций, служащих исходными приближениями в последующем расчете, используется разного рода вероятностная информация. Ее источником может быть банк данных белковых структур, статистическое распределение остатков на конформационных картах усредненная предпочтительность парных остаток-остаточных контактов или алгоритмы предсказаний вторичных структур [210-216]. Очевидно, данные такого рода ориентировочны и могут скорее ввести в заблуждение, чем помочь в решении структурной проблемы пептидов и тем более белков. Конформационные возможности каждого из них определяются не статистикой, а определенной и всегда уникальной аминокислотной последовательностью. Показательно в этом отношении исследование М. Ламберта и Г. Шераги [210-212] панкреатического полипептида из 36 остатков. В расчет его структуры в качестве дополнительной вероятностной информации привносятся данные о распределении значений двугранных углов основной цепи в четырех областях конформационной карты ф-ц/ и распределении конформационных состояний трипептидных сегментов на нерегулярных участках трехмерных структур белков, изученных кристаллографически. Набор исходных для оптими- [c.244]


    Опыты на пептидных гомоиолимерах позволили установить, что некоторые аминокислотные остатки обнаруживают свойство встраиваться в а-спираль. Эти данные были затем применены к глобулярным белкам с известным пространственным строением. Оказалось, что остатки, которые образуют спирали в гомоиолимерах, стремятся встраиваться в спирали также и в глобулярных белках. Такое соответствие послужило основой для многочисленных попыток установить корреляции между аминокислотной последовательностью белка и наличием спиралей в этом белке. Позднее такие корреляции были распространены и на другие вторичные структуры. Эти попытки интересны с той точки зрения, что они являются некой основой пока еще не известного будущего метода, с помощью которого можно будет устанавливать трехмерную структуру белка только по его аминокислотнон последовательности. Это и послужило причиной подробного описания большинства из существующих методов предсказания вторичной структуры по аминокислотной последовательности. Сведения, необходимые для понимания методов, основанных на статической механике, даются в приложении. [c.155]

    Каждый белок или пептид специфическим образом свернут в пространстве, и эта конформация определяет его физико-хнми-ческие и биологические свойства. Пространственная структура белка (пептида) в целом кодируется его первичной структурой. Эта взаимосвязь создает предпосылки для теоретических расчетов и предсказаний вторичной структуры белков на основе их аминокислотной последовательности. Пространственная структура достаточно подвижна. т. е. способна изменяться под воздействием внешних усло-Ш1Й илн различных агентов, и в этом смысле правильнее говорить [c.82]

    В конце 1970-х годов было проведено много исследований, посвященных различным аспектам корреляционного подхода к предсказанию вторичной структуры по аминокислотной последовательности. Однако они не внесли принципиально нового в решение обсуждаемой проблемы. Не претерпела серьезных изменений и надежность предсказательных алгоритмов, как предложенных вновь, так и сделанных ранее, модифицированных и опирающихся на значительно больший экспериментальный материал [140—157]. В этой связи интересны данные сопоставления конформационных параметров П. Чоу и Г. Фасмана [99] с параметрами, полученными таким же образом М. Левиттом из анализа приблизительно вдвое большего количества белков [153]. Исследователи обнаружили значительное различие в распределении остатков в двух наборах по их способностям образовывать и разрушать вторичные структуры. С помощью парамет- [c.266]

    Оценка точности эмпирических предсказаний вторичных структур по аминокислотным последовательностям представляет собой непростую задачу. Многие авторы корреляционных методов в этом вопросе оказываются недостаточно объективными. Так, опробирование методов часто проводится на базовом наборе белков, что, очевидно, имеет огромное значение. При использовании многих правил и большого числа эмпирических параметров для ограниченного круга объектов можно получить удовлетворительное соответствие, которое, однако, не будет отражать реальную предсказательную ценность метода. Иллюстрацией сказанному служит табл. II.4, содержащая результаты различных методов предсказания вторичной структуры аденилаткиназы, о пространственном строении которой авторы не были информированы. В результате приблизительно в половине отнесений число ошибок превышает число правильных предсказаний в 1,5— [c.267]

    Ф. Коэном и соавт. [261—263] развит ступенчатый метод предсказания трехмерной структуры белка по известной аминокислотной последовательности. Метод, получивший название комбинированного, предусматривает проведение трех последовательных стадий 1) предсказание на основе существующих алгоритмов регулярных вторичных структур 2) упаковку а-спиралей и -складчатых листов в конформацию, отражающую характерные особенности нативной структуры 3) энергетический расчет отобранных конформаций с использованием моделей, подобных сверхупрощенным моделям Левитта [254], Кунтца и соавт. [155], Робсона и Осгуторпа [270]. План исследования на первый взгляд выглядит логично. В действительности же он нереален, причем нереален в отношении всех своих трех положений, что следовало из данных, уже имевшихся к моменту его появления. Первый пункт плана невыполним по крайней мере по трем причинам. Во-первых, у большей части белков вторичные структуры составляют незначительную долю трехмерной структуры, а в среднем в а-спирали входит 25—30% остатков, а в -структуры — 15—20%. Во-вторых, встречающиеся в конформациях белков вторичные структуры, как правило, сильно искажены и лишь условно могут быть отнесены к регулярным (рис. П.З). В-третьих, надежность существующих алгоритмов предсказания вторичных структур не превышает 50% (гл. 8), что исключает их практическое использование. Возможно, по этим или иным причинам авторы не стали обращаться к предсказательным алгоритмам, а приступили к реализации второго пункта своего плана, выбрав для демонстрации возможностей предлагаемого ими метода белки, изученные рентгеноструктурно, и взяв всю информацию о геометрии [c.319]

    Если при Предсказании вторичной структуры не используются методы расчета потенциальной энергии, то что же они представляют из себя За исключением тех из них, в которых привлекаются экспериментальные данные по переходу спираль— клубок в синтстнчсских полипептидах, подавляющее число методов основано на статистических подходах. Они используют частоты встречаемости конформационных состояний для индивидуальных аминокислотных остатков в таблицах зависимостей последовательность — конформация для белков с известной пространственной структурой. Самый простой пример предсказательного подхода состоит в привлечении экспериментального факта о том, что пролин никогда пе встречается в спиральных участках белков, входящих в банк пространственных структур (за исключением N-концевой позиции). Поэтому при поиске энергетического минимума случай, когда остаток пролина присутствует в спиральной области исходной конформации белка, вообще не рассматривается. [c.586]

    Эти соображения позволяют построить простую схему предсказания вторичной структуры белков. Суть ее заключается в том, чтобы, приписав конформационные параметры каждому остатку, расположенному в известной последовательности, попытаться затем выделить кластеры остатков полипептидной цепи, склонные образовывать спираль, к которым в определенных точках примыкают остатки, прерывающие формирование этой вторичной структуры. Диалогичную процедуру можно проделать и в отнощении /3<лоев. Это легко сделать, если в соответствии со значениями конформационных параметров разделить все остатки на следующие классы формирующие спираль, препятствующие ее образованию, формирующие /З-структуру и препятствующие ее образованию. Такая классификация приводится в табл. 5.12. Используя ее. можно составить набор простых правил для предсказания вторичной структуры белков исходя из их аминокислотной последовательности. [c.281]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]

    Анализ известных белковых структур дает ценные сведения для понимания.механизма свертывания и стабильности белков. В структурах этих белков обнаруживаются шесть уровеней организации. На первом уровне находится аминокислотная последовательность, которая целиком определяет окончательную структуру белка. В структурах белков можно выделить несколько типов упорядоченности формы основной цепи. Это так называемые вторичные структуры, которые составляют второй уровень. Две из таких регулярных структур (а-спираль и 3-складчатый лист) были предсказаны на основе ковалентного строения основной цепи как наиболее простые. Следующие два уровня, сверхвторичные структуры и структурные домены, гораздо более сложны и пока не предсказуемы. На этих уровнях также проявляются вполне определенные закономерности, например такие, как корреляция между близкими по цепи остатками. Эти закономерности не выражаются в каких-либо определенных структурах, а носят весьма общий характер. На двух самых высоких уровнях организации, занимаемых глобулярными белками и агрегатами, сейчас уже делаются попытки некоторых структурных предсказаний. Возможность таких предсказаний основана на том, что нижние структуры, домены для глобулярных белков и глобулярные белки для агрегатов предполагаются внутренне стабильными (в некоторых случаях это подтверждено экспериментом). Характер агрегатов можно предсказать с помощью анализа контактной поверхности глобулярных белков. Это же относится и к предсказаниям строения глобулярных белков по их доменам. Кроме того, свойства поверхности, как это следует из изучения поверхностей раздела белок — белок, имеют важное значение для белкового узнавания. В главе обсуждены некоторые законо- [c.127]

    Определение аминокислотных последовательностей и расшифровка трехмерных структур миоглобина, гемоглобина, лизоцима и ряда других белков позволили в 1960-е годы сформулировать задачу установления зависимости между химическим и пространственным строением белковых молекул. Впервые стала возможной постановка исследований структурной организации белков, конечная цель которых заключается в априорном предсказании нативной конформации и динамических свойств белковых молекул по известной аминокислотной последовательности. Поиски решения этой задачи продолжаются с возраста-юш,ей интенсивностью более тридцати лет. С самого начала возобладал и по сей день остается господствующим, чуть ли не единственным, эмпирический подход. Его материальной основой служат главным образом данные рештеноструктурного анализа белков, а идейной -три гипотетических представления а-спиральная концепция Полинга и Кори [1, 2], классификация белковых структур на первичную, вторичную и третичную, предложенная Линдерстрем-Лангом [3], и гидрофобная концепция Козмана [4]. [c.229]

    В связи с тем, что существуют группы белков с преимущественным содержанием а-спиралей и -структур, можно изучать их пространственную организацию, или вовсе не предсказывая конформационных состояний отдельных остатков, что не удается делать правильно, а беря вторичные структуры прямо из опыта, или оценивая брутто содержание последних с помощью известных статистических методов, что автоматически увеличивает точность предсказания на несколько десятков процентов, поскольку в этом случае приходится идентифицировать состояния не 20 аминокислотных остатков, а лишь трех-четырех структурных групп Левитта и Чотиа. При изменении постановки задачи и неизбежном снижении требований к ожидаемой информации появляется возможность решения других вопросов, правда, менее важных. Например, можно сфокусировать внимание на определении общего процентного содержания аминокислотных остатков в последовательности, находящихся в а- и -областях, и полученные результаты сравнивать с аналогичными данными спектральных методов. Можно поставить вопрос о том, каков порядок взаимодействий вторичных структур друг с другом и какие в принципе возможны способы укладки а-спиралей относительно -структур и последних друг относительно друга, и о частоте их встречаемости в белках. Можно, наконец, разрабатывать новые предсказательные алгоритмы, классифицирующие белки по группам (а), ( ), (а + ) и (a/ ). Подобные вопросы, до работы Левитта и Чотиа, представлялись частными случаями. Теперь же анализ укладки, например, полипептидной цепи апомиоглобина — это уже исследование белка, не случайно взятого из множества других, а планомер-316 [c.316]

    Для всех эмпирических методов предсказания регулярных форм основной цепи на локальных участках аминокислотной последовательности, образования из этих форм супервторичных структур, доменов и трехмерных структур белковых молекул (с момента их появления и по сегодняшний день) характерны следующие черты принципиального порядка. Прежде всего, в основе всех исследований этого направления лежит конформационная концепция Полинга и Кори, согласно которой трехмерная структура белка представляет собой ансамбль регулярных, вторичных структур. Единство эмпирических методов предсказания по отношеш1ю к этой концепции неизбежно, поскольку в противном случае становится бесперспективным поиск эмпирических корреляций. Очевидно, если пространственное строение сложных макромолекул состоит не из отдельных немногочисленных стандартных блоков, а включает неограниченное количество разнообразных нерегулярных структурных сегментов, то нельзя рассчитывать на его описание с помощью простых правил, выведенных путем статистической обработки экспериментального материала, всегда крайне ограниченного в решении данной задачи. В первых работах предполагалось, что пространственное строение глобулярных белков почти сплошь состоит из вторичной структуры одного типа — а-спирали. Позднее к вторичным структурам был отнесен -складчатый лист, а затем -изгиб и недавно Q-петли. Привлечение последних двух означало принципиальный отход от строгого определения понятия вторичной структуры, так как -изгиб и Q-петли не являются регулярными формами. Кроме того, их идентификация отличается от идентификации а-спиралей и -структур по получаемой при этом информации о структуре белка. Если предсказание регулярной структуры в идеале означает определение на отдельном участке белковой цепи конформационных состояний составляющих его остатков, точнее, геометрии основной цепи участка, то предсказание изгибов и петель даже в идеале означает лишь утверждение об изменении направления цепи, причем, если это касается -изгибов, даже не на 180°, а лишь на угол больше 90° для петель и такое ограничение отсутствует. Это связано с тем, что -изгибы и Q-петли могут быть реализованы путем практически неограниченного количества различных форм основной цепи, а каждая форма — набором большого числа конформационных состояний остатков. Излишне говорить, что между -изгибами и 0-петлями нет четких границ. [c.328]

    Вторичная структура белков определяется природой, последовательностью и конформационным состоянием аминокислотных остатков. Предпринимаются многочисленные попытки предсказания вторичной и третичной структуры белков на основе статисФического анализа последовательностей аминокислот (см. в [153]) и даже аминокислотного состава [154]. Следует отметить, что многие функционально близкие белки имеют сходщю пространственную структуру, хотя у них очень мало общего в последовательности аминокислот [155]. М наоборот. [c.30]

    Все четыре вторичные структуры, обнаруженные либо в белках, либо в модельных полипептидных системах, совпадали с предсказанными Полингом и Кори. Однако, как будет показано в гл. 5, критерий, первоначально используемый для их построения, оказался не совсем точным и был изменен с учетом современного представления о силах, стабилизирующих конформации макромолекул. Часть трудностей касались эффективной прочности водородных связей. Другое серьезное затруднение возникло в связи с влиянием боковых цепей. Именно они в основном определяют, образует ли данная аминокислотная последовательность неупорядоченную структуру, а-спираль, /З-слой или некоторые другие структуры, обнаруженные в белках. Спираль Зю иногда находят в коротких участках структуры глобулярных белков. Это, по существу, вариант а-спирали, в котором на один виток приходится 3 остатка вместо 3,6. (В коротких участках структуры глобулярных белков иногда находят и два других варианта спиралей а -спираль и тг-спираль. Описание этих структур можно найти в книге Дикерсона и Гейса (1969).) Г ораздо шире распространена /3-структура, изображенная на рис. 2.25. Она дает пептидной цепи возможность круто поворачивать, сохраняя при этом энергетически выгодные значения конформационных углов и одну внутрицепочечную водородную связь. /3-Изгибы справедливо называют элементами вторичной структуры, поскольку они возникают в результате ближних взаимодействий и их можно рассматривать как начало спирали с нулевым шагом. [c.91]


Смотреть страницы где упоминается термин Предсказание вторичной структуры по аминокислотной последовательности: [c.134]    [c.134]    [c.273]    [c.249]    [c.508]    [c.512]    [c.267]    [c.267]    [c.255]    [c.260]    [c.508]    [c.512]    [c.209]   
Смотреть главы в:

Принципы структурной организации белков -> Предсказание вторичной структуры по аминокислотной последовательности

Принципы структурной организации белков -> Предсказание вторичной структуры по аминокислотной последовательности




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные последовательности



© 2025 chem21.info Реклама на сайте