Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задачи физики белка

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Несмотря на работы многочисленных исследователей, до сих пор еще не получены вещества, тождественные природному белку. Трудность решения этой задачи объясняется не только физико-химическими свойствами белков, затрудняющими получение их в чистом виде, но и громадным числом возможных изомеров. Так, если предположить, что в состав молекул белков каждый из двадцати продуктов гидролиза входит в количестве только одной молекулы, то, изменяя порядок сочетания, мы получим [c.396]

    Определим основные задачи физики белка. [c.88]

    Таким образом, задачи физики белка сводятся к следующим  [c.178]

    Важная задача физики белков состоит в нахождении структуры глобулы, образуемой цепью или цепями известной первичной структуры в водном окружении (см. 4.9). [c.222]

    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Значение того факта, что вопросы, на которые пытается ответить физико-химик, имеющий дело с полимерами, в целом качественно отличаются от вопросов, которые возникают при исследовании веществ, состоящих из малых молекул, подчеркнуто, вероятно, еще недостаточно. Представьте, что необходимо описать свойства водного раствора, в котором растворенное вещество состоит не из молекул какого-то одного рода, а, например, из смеси спиртов. Это вещество может не только быть членом гомологического ряда первичных спиртов, полученных из нормальных парафиновых углеводородов, но также содержать молекулы с различным числом разветвлений и даже молекулы многоатомных спиртов. Вряд ли было бы целесообразно описывать такую сложную смесь. Поскольку смеси малых молекул могут быть разделены на фракции, содержащие молекулы лишь одного рода и обладающие высокой чистотой, изучение свойств растворов малых молекул касается в основном систем, в которых растворенное вещество представлено молекулами одного или по крайней мере двух сортов. Однако в случае полимеров однородные фракции могут быть выделены лишь для ограниченной группы природных глобулярных белков. При исследовании синтетических макромолекул и многих макромолекулярных препаратов, полученных из живых организмов, мы имеем дело со сложными смесями. Известно, что такие смеси могут быть разделены путем фракционного осаждения, фракционного экстрагирования или другими методами, однако однородность даже самых узких фракций, полученных таким образом, далека от идеальной химической однородности , подразумевающей в классическом смысле наличие молекул лишь одного сорта. Задача физико-химика в таком случае двояка ему не только необходимо описать и объяснить свойства растворов имеющегося в его распоряжении сложного растворенного вещества, но также и охарактеризовать растворенное вещество как с точки зрения свойств составляющей его средней молекулы, так и с точки зрения возможности изменения этих свойств. [c.15]


    Основная физическая задача, возникающая при изучении белков, состоит в установлении связи между их строением и свойствами. Это — классическая задача молекулярной физики. Решение ее начинается с установления структуры белка — пространственного расположения атомов и состояния их электронных оболочек в белковой молекуле. [c.177]

    Критический анализ пройденного пути в данном случае представляется особенно важным, поскольку по своим свойствам, в том числе молекулярной организации, белок является уникальным объектом исследования, как правило, требующего отказа от традиционных подходов и представлений. Все выдающиеся достижения в решении фундаментальных задач проблемы белка, оцененные Нобелевской премией, были получены лишь на основе оригинальных концепций, качественно новых теорий и экспериментальных методов. Одновременно такого уровня исследования всегда оказывались высшими достижениями физики, химии или биологии. Во многих отношениях проблема белка является проблемой всего естествознания. Поэтому для понимания ее длительной и непростой истории изложение в монографии всех [c.5]

    Разработка новых подходов и методов для анализа связи между структурой и свойствами и биологической активностью органических соединений, открывающих путь к эффективному планированию синтеза соединений с заданными характеристиками, является важной проблемой современной органической химии. В статье рассматриваются основные принципы методов предсказания физико-химических свойств и биологической активности химических соединений, а также дизайна новых соединений с заданными свойствами и биологической активностью, развиваемые нами новые подходы и их применение для решения конкретных задач. Основные направления работ связаны с построением регрессионных моделей и генерацией структур, использованием локальных молекулярных характеристик и искусственных нейронных сетей, молекулярным моделированием белков и лигандов. [c.112]

    На рубеже Х1Х-ХХ вв. к изучению белков подключаются физическая химия, а немного позднее - новейшая физика, что, однако, далеко не сразу стало способствовать решению задачи. И здесь обилие новых данных, на первых порах неправильно истолкованных, приводило к тому, что белки представлялись еще более загадочными как в физическом, так и в химическом и биологическом отношениях. Физические исследования белков начались с изучения их коллоидного состояния, выявления диффузионных, осмотических, седиментационных и электрохимических свойств. Впервые было получено представление о форме и размерах большого числа белков в активном состоянии, а также достаточно надежно определены их молекулярные массы. При существовавшем в первые десятилетия XX в. уровне знаний о строении молекул, тем более макромолекул, новые [c.65]

    Таким образом, к решению задачи химического строения белков присоединилась еще одна область естествознания - физика. С 1920-х годов белок становится объектом всесторонних химических, биологических и физических исследований, а проблема белка (в ту пору она сводилась, по существу, только к установлению химического типа белковых молекул) - проблемой всего естествознания. [c.66]

    Если же обратиться к проблеме белка - главному предмету нашего рассмотрения, то приходится констатировать, что становление нелинейной неравновесной термодинамики прошло практически незамеченным для составляющих эту проблему задач, в том числе задачи структурной организации белковых молекул - исходной в логической цепочке, связывающей строение белка с его функцией и структурами надмолекулярных систем. Между тем предпринимаемые уже в течение трех десятилетий попытки подойти к решению вопроса, используя эмпирические подходы, равновесную термодинамику и формальную кинетику, неизменно терпят неудачу. Оставаясь нерешенной, структурная задача сдерживает рассмотрение всех последующих и создание теоретической молекулярной биологии - науки, столь же необходимой для понимания процессов жизнедеятельности, как молекулярная физика и квантовая химия для трактовки физических и химических свойств органических и неорганических низкомолекулярных соединений. А. Сент-Дьердьи писал "Мы действительно приблизимся к пониманию жизни только тогда, когда наши знания обо всех структурах и функциях на всех уровнях - от электронного до надмолекулярного - сольются в единое целое", и далее "...одним из основных принципов жизни является организация мы понимаем под этим, что при объединении двух вещей рождается нечто новое, качества которого не адекватны и не могут быть выражены через качества составляющих его компонентов" [37. С. 11-12]. [c.89]

    Одной из глобальных задач современной биологии и ее новейших разделов молекулярной биологии, биоорганической химии, физико-химической биологии—является выяснение молекулярных основ и тонких механизмов синтеза белка, содержащего сотни, а иногда и тысячи остатков L-амино-кислот. Последние располагаются, как это установлено, не хаотично, а в строго заданной последовательности, обеспечивая тем самым уникальность структуры синтезированной белковой молекулы, наделенной уникальной функцией. Другими словами, механизм синтеза должен обладать весьма тонкой и точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи. Установлено, что кодирующая система однозначно определяет первичную структуру, в то время как вторичная и третичная структуры белковой молекулы определяются фи-зико-химическими свойствами и химической структурой радикалов аминокислот в полипептиде. [c.509]


    В случае каучука и целлюлозы задача значительно упрощалась тем, что в результате деструкции получалось небольшое число сравнительно легко разделяемых соединений. Относительно просто было также установлено положение связей, соединяющих элементарные звенья. При изучении структуры таких сложных высокомолекулярных соединений, как белки (с. 329), продукты деструк ции которых содержат более двух десятков различных аминокислот, к тому же трудно разделяемых, ценность обычных методов деструкции значительно меньше. Поэтому наряду с исследованием продуктов деструкции необходимо изучать свойства и поведение самих макромолекул. При этом используются преимущественно не химические, а физические и физико-химические методы [5—8]. Проблема настолько сложна, что достаточно надежные сведения [c.15]

    Очистка белка, полученного из природного источника, представляет собой в большинстве случаев нелегкую задачу. Интересующий нас белок составляет иногда ничтожную часть исходного материала —менее 0,1% сухого веса. Ненужный материал — это часто тоже белки и притом нередко близкие по своим свойствам к выделяемому белку. Из-за больших размеров и неустойчивости белковых молекул для очистки белков невозможно использовать многие обычные методы очистки органических соединений, например такие, как перегонка или экстракция органическим растворителем. Трудно представить себе химика-органика, пытающегося выделить продукт реакции, идущей с выходом всего лишь 0,1% и к тому же дающей сотни побочных продуктов. Между тем именно такая задача часто стоит перед биохимиком, желающим исследовать физико-химические свойства или биологическую активность определенного белка. [c.79]

    Широкое внедрение полимерных материалов в различных областях народного хозяйства поставило перед исследователями принципиально новую задачу — изучить состояние, структуру и диффузионные свойства воды в полимерной матрице. Действительно, изделия на основе полимеров при эксплуатации и хранении часто находятся в контакте с газообразными и жидкими водными средами, в результате чего изменяются их физико-химические, электрические и механические свойства. Вода, диффундирующая в полимер, изменяет его физическое состояние (пластификация), а при наличии связей, подвергающихся гидролизу, вызывает деструкцию полимерной цепи, что ухудшает свойства материала, определяемые его высокой молекулярной массой. Вода может вступать в реакцию с полимером и без разрыва полимерной цепи, однако свойства нового полимера, полученного при полимераналогичных превращениях, отличаются от свойств исходного. Для всех биополимеров (белки, нуклеиновые кислоты, полисахариды) вода является непременным компонентом и часто абсолютно необходима для проявления их биологических свойств. [c.5]

    При определении ряда витаминов задача часто осложняется тем, что многие из них находятся в природном материале в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушение этих комплексов и выделение витамина в свободном виде, доступном для физико-химического или микробиологического анализа. Обычно это достигается путем применения особых условий обработки (кислотный, щелочной или ферментативный гидролиз, автоклавирование и т. д.). [c.196]

    Правильную оценку влияния межмолекулярных взаимодействий на процесс студнеобразования и на свойства студней следует считать такой же важной задачей в ряду перспективных исследований студнеобразования в полимерах, как и расшифровку морфологии студней. Этот вопрос приобретает, вероятно, особое значение при рассмотрении студнеобразования в биологических системах, и в частности в глобулярных белках, где полное или частичное развертывание макромолекул приводит одновременно и к рекомбинации мостичных водородных связей. Выбор между этими взаимодействиями может быть правильно оценен при условии достоверности оценки возможности студнеобразования за счет тех или иных сил. Вероятно, при этом следует исходить из того, что застудневание предопределяется фазовыми превращениями в этих системах. Впрочем, проблемы биологического характера, включая и случаи возникновения студнеобразного состояния, составляют особый предмет, выходящий за рамки общей дисциплины физико-химии полимеров. [c.254]

    Анализ продуктов жизнедеятельности организмов является одной из самых трудных задач биологии, химии и физики. В живом организме в процессе обмена веществ синтезируются и распадаются сложнейшие соединения (белки, углеводы, жиры, ферменты, витамины, гормоны и т. д.). Для очистки и разделения веществ в органической химии и биохимии широко применяются методы, основанные на различиях в упругости пара (обычная перегонка, перегонка с водяным паром, фракционная перегонка, перегонка в вакууме, сублимация и др.) и растворимости веществ (распределение между двумя несмешивающимися жидкостями, экстракция, осаждение специально подобранными веществами или изменением pH раствора и другие приемы). Бурное развитие химии в XX в. вызвало необходимость создания принципиально нового метода выделения и очистки природных веществ, применяемого в тех случаях, когда приведенные выше приемы вызывают глубокие изменения состава выделяемых веществ и когда последние находятся в природном материале в сложных смесях или в ничтожном количестве. Новый метод разделения веществ был открыт в 1903 г. выдающимся русским ученым М. С. Цветом и назван им хроматографическим методом. [c.5]

    Определение величины и пространственной геометрии белковой молекулы является более трудной задачей, чем установление ее первичной структуры. Причины трудностей заключены как в несовершенстве применяемых для этих целей физико-химических методов, так и в высокой лабильности выделенных белков и их склонности к денатурации даже при самых оптимальных условиях выделения и хранения. [c.127]

    НОСТИ цветных реакций. Эти попытки, однако, не имели достаточного основания, поскольку окраска, получаемая с белками, как правило, слабее окраски, получаемой с соответствующими белковыми гидролизатами. Это обусловлено, по всей вероятности, тем, что в белковой молекуле некоторые реактивные группы скрыты внутри глобулы и вследствие этого недоступны действию окрашивающего реагента (см. гл. VII). Поэтому для определения аминокислотного состава белка необходимо подвергнуть его полному гидролизу. Большинство аминокислот можно определить в кислотном гидролизате, однако некоторые аминокислоты обнаруживаются только после гидролиза белка гидроокисью бария (см. выше). Разделение смеси аминокислот представляет собой трудную задачу, так как аминокислоты являются амфолитами, растворимыми в воде и нерастворимыми в таких органических растворах, как спирт. Только иминокислоты пролин и оксипролин раство римы в этиловом спирте. Ввиду того что аминокислоты обладают сходными физико-химическими свойствами, их нельзя разделить фракционированием спиртом или нейтральными солями. Некоторые аминокислоты можно, однако, отделить путем осаждения их при соответствующих условиях. Например, растворимость цистина при нейтральной реакции и тирозина при слегка кислой реакции настолько мала, что при доведении реакции среды до соответствующего значения pH они почти полностью выпадают в осадок. Другие аминокислоты можно осадить специфическими реактивами. Однако ни один из этих методов не является полностью удовлетворительным в количественном отношении, так как все соответствующие осадки до известной степени растворимы. [c.31]

    Создание пептидной теории было встречено с огромным энтузиазмом, так как она удачно объясняла многие основные свойства белковых веществ как химические и физико-химические, так и биологические. Таким образом, задача выяснения общего принципа строения белка была решена Фишером в течение нескольких лет. Эти работы сделали имя Фишера бессмертным.. [c.89]

    Значительно более трудную задачу представляет количественное определение отдельных белков в природных веществах. Стечением времени удалось разработать ряд методов, в которых использованы и физико-химические свойства белков и осаждение их как нейтральными солями, так и кислотными реагентами. [c.357]

    Исследование фибриллярных белков типа шелка и шерсти представляет крайне трудную задачу, так как они нерастворимы в воде. Шелк состоит из длинных фиброиновых нитей, связанных с другим белком — серицином. Имеются различные данные о молекулярном весе фиброина, однако обычно его принимают равным 84 ООО [108]. Много работ было посвящено выяснению аминокислотного состава фиброина, причем было установлено, что он состоит более чем на 50% из остатков глицина и аланина. На отдельных фракциях фиброина было проведено селективное расщепление с последующим анализом концевых групп. Применяя различные физико-химические методы, такие, как рентгеноструктурный анализ, инфракрасную и ультрафиолетовую спектроскопию, пытались сопоставить данные, полученные при исследовании различных фракций фиброина. Были сделаны также попытки расположить аминокислотные остатки таким образом, чтобы объяснить механические и химические свойства волокна [108]. [c.417]

    После выхода в свет первого издания книги Ли в науке произошли громадные изменения. Развитие ядерной физики и осуществление космических полетов поставили перед радиобиологией и радиационной генетикой задачи, связанные с влиянием на клетку различных излучений, с проблемой защиты, оценкой опасности радиации для наследственности человека, с использованием излучений в радиационной селекции микроорганизмов и растений, с новыми проблемами в радиационной генетике млекопитающих, с изучением радиационного поражения клеток человека в культуре тканей, с модельными опытами на белках и нуклеиновых клетках в растворах и в сухом состоянии и т. д. [c.3]

    При исследовании биологической активности или структуры и свойств белков путем изучения влияния химической модификации белка на эти свойства особенно важно проводить параллельные физико-химические исследования. Такие физико-химические исследования дают представление о степени гомогенности производных, позволяют установить, не произошла ли денатурация, и вскрывают наличие неспецифических структурных изменений, которые могут оказывать влияние на активность (например, влияют на степень ионизации или на величины суммарного заряда). Задача, которая должна быть поставлена при модификации белков, производимой с целью исследования их структуры и свойств, заключается в том, чтобы получить такие производные белков, которые были бы столь же гомогенны, как и природный материал. К этому редко стремятся, но еще реже этого удается достигнуть. С одной стороны, пониженная растворимость многих белковых производных осложняет физико-химические измерения. С другой стороны, отсутствие специфических реагентов и средств контроля степени превращения определенных функциональных групп обесценивает результаты таких исследований. При современном накоплении сведений об этих последних факторах можно считать указанное затруднение преодоленным, причем следует надеяться на то, что такие параллельно проведенные физико-химические [c.337]

    Физическая консистенция, структура и физико-химические свойства пищи. Проблема искусственной пищи включает в себя весьма обширный и сложный комплекс задач по приданию необходимой структуры искусственному пищевому продукту, создаваемому как из смеси аминокислот, так и из белка любого происхождения, а также по приданию ему определенных физико-химических свойств [24], в том числе определенного вкуса, аромата. [c.520]

    Первая задача заключается в изучении структурной организации и создании теории, устанавливающей логическую и количественную взаимосвязь между аминокислотной последовательностью и пространственной структурой белка, предсказывающей его конформационные и электронные свойства. Цель следующей задачи состоит в изучении физико-химических свойств белка и, основываясь на знании не только геометрии, но и структурной организации белковой молекулы, выявлении принципов ее функционирования, иными словами, разработке теории структурно-функциональной организации белка. Третья задача направлена на создание общей теории рассматриваемой функции (здесь биокатали-тической), учитывающей решения предшествующих задач, особенности ферментативного катализа, физико-химические основы этого явления и возможности современного естествознания. [c.77]

    Стремление свести рассмотрение конформационных свойств природных аминокислотных последовательностей к анализу решетчатых моделей объясняется не только естественным желанием максимально упростить задачу. Не меньшее значение имело также то обстоятельство, что модели такого вида уже давно использовались в физике полимеров. Впервые и сразу же в квадратном и кубическом вариантах они были предложены в 1947 г. У. Орром [106] при изучении конформационных свойств синтетических гомополимеров и вскоре стали основой дальнейшего развития конфигурационной статистики полимерных цепей. Лишь спустя 30 лет решетчатые модели были опробованы Гё и Такетоми для белков [57] Моделирование сложного объекта с помощью простых схем может иметь физический смысл и быть оправданным только при одном непременном условии исследуемые макроскопические свойства этого объекта, а именно, самопроизвольное свертывание белковой цепи в компактную нативную конформацию, не должны определяться индивидуальными свойствами его микроскопических составляющих, т.е. конкретным химическим строением 20 стандартных аминокислотных остатков. [c.498]

    В последние годы все большее внимание начинает уделяться созданию методов расчета конформационных состояний боковых цепей аминокислотных остатков. Пробуждающийся интерес к этой задаче оправдан, поскольку именно боковые цепи, в которые входят две трети атомов Селковой молекулы, в значительной мере определяют форму основной цепи и нативную конформацию белка в целом, а следовательно, его биофизические и биохимические свойства. Однако в подавляющем большинстве случаев сейчас, как и ранее, авторы теоретических и эмпирических исследований структурной организации пептидов и белков продолжают исходить из предположения, что конформационное состояние основной цепи определяет ориентации боковых цепей, а не наоборот. Если бы это было действительно так, то структуры всех белков, имеющих одинаковые основные цепи, мало чем отличались бы друг от друга. По аналогичной причине в рассматриваемых ниже работах, которые посвящены полной реконструкции трехмерной структуры белка, задача решается чисто формальным образом, вне связи с физикой реального механизма свертывания белковой цепи в нативную конформацию. Ориентации боковых цепей рассчитываются при фиксированной форме основной цепи, которая [c.525]

    Молекулярная биология исследует молекулярную природу основных явлений жизни, прежде всего наследственности и изменчивости. Эти явления определяются строением и свойствами нуклеиновых кислот — информационных макромолекул. Становление молекулярной биологии связано с открытием генетической роли нуклеиновых кислот и с ее расшифровкой. Гены, т. е. фрагменты молекул ДНК и РНК, программируют синтез белков. Эти молекулы являются законодательными , а белки — исполнительными . Молекулярная биология началась с открытия трансформации бактерий посредством ДНК (Эвери, Мак-Леод, Мак-Карти, 1944). Молекулярная биология ищет объяснение биологических явлений в химии и молекулярной физике. Она изучает широкую совокупность жизненных процессов, в том числе ферментативный катализ, мембранный транспорт, механохимические явления и т. д. В отличие от классической биохимии, молекулярная биология объединяется с физикой и ее специфика состоит именно в физических аспектах исследований и задач. [c.220]

    Т. е. для биополимеров, не имеющих регулярной структуры, необходимо установление общего плана построения молекул сюда относятся как сведения об архитектонике молекулы (число и относительное расположение разветвлений, природа и размеры внутренних и внешних цепей), так и данные о последовательности моносахаридов на каждом конкретном участке молекулы полимера. Нельзя не отметить, что задача установления общего плана построения полимерной молекулы при выяснении первичной структуры белков и нуклеиновых кислот (биополимеров с единственным типом межмономерной связи) не ставится и является характерной для полисахаридов, приобретая особое значение в случае смешанных углеводсодержащих биополимеров. В настоящее время для решения этой задачи применяют фрагментацию полисахаридной цепи на олигомеры посредством частичного расщепления гликозидных связей. Методы установления строения низших олигосахаридов, получаемых при такой фрагментации, в настоящее время разработаны достаточно хорошо и применимы к небольшим количествам вещества, но они весьма трудоемки. Поэтому требует внимания разработка прямых физико-химических методов идентификации и установления строения олигосахаридов. [c.633]

    Таким образом, выяснение пространственного строения пептидов и белков представляет собой достаточно сложную задачу. В некоторых случаях трехмерная структура конкретного соединения может быть выяснена на основе какого-либо одного метода (например, с помощью рентгеиоструктуриого анализа кристаллического белка). При исследовании пептидов и небольших белков в растворах хорошие результаты дает сочетание ряда физико-химических методов. Иногда ценную информацию можно получить на основе применения, наряду с экспериментальными подходами, теоретических расчетных методов. [c.82]

    В этой книге излагается современная статистическая теория макромолекул, основанная на рассмотрении их конформаций. Эта теория раскрыла сущность ряда важных явлений, связанных с макромолекулами она дала практически полное количественное объяснение поведению макромолекул в растворах, молекулярное истолкование высоко-эластичности и сыграла большую роль в развитии физики биополимеров—белков и нуклеиновых кислот. При решении указанных и ряда других задач конформационная статистика привела к принципиально новым результатам и, тем самым, пазволила пойти значительно дальше, чем первоначальная модельная статистика Куна, Гута и Марка. [c.6]

    Ныне внимание химиков направляется на развитие исследований по изысканию вешеств, обладающих физиологической активностью, и установлению их действия на организм, на химические и физико-химичсские процессы в организме, на выявление новых химических источников тока, отыскание способов прямого преобразования химической энергии в электрическую. Во всех этих направлениях сделаны первые успешные шаги. Перед современной химией стоят такие грандиозные задачи, как синтез белка и искусственной пищи, получение редких элементов в чистом виде, наконец, полное решение проблемы управления химическими реакциями. [c.115]

    Все изложенное позволяет рассматривать задачу создания той или иной формы искусственной пищи как задачу, аналогичную многим техническим задачам создания тех или иных полимерных изделий, обладающих заданным условиями эксплуатации комплексом свойств. В принципе создание автомобильной покрышки, конструкционного материала (например, стеклопластика), искусственного волокна, пленочных изделий и т. п. находится в одном ряду с созданием искусственного мяса, икры и других форм пищи. Во всех этих случаях требуется определить структуру и необходимый комплекс свойств и создать изделие, отвечающее поставленной задаче. Различие состоит в том, что полимерное пищевое изделие предназначено для еды и поэтому появляются требования создания вкуса и внешней привлекательности, которые тесно связаны с физико-хилшческимн свойствами полимера, в данном случае белка, полисахарида или композиций на их основе. [c.312]

    Необходимые при новом подходе к изготовлению искусственных пищевых изделий из пищевых и съедобных полимеров физико-химические исследования приобрели несколько иной характер в соответствии с поставленными задачами и этим вносят в физико-химию полимеров свой вклад. В качестве примера можно привести влияние макроскопической структуры белка на кинетику его протеолити-ческого расщепления ферментами желудочно кишечного тракта 37, 38. [c.313]

    Но коллоидная химия, как уже отмечалось (стр. 11—12), ставит своей задачей также изучение систем с физико-химическими свойствами, отличными от перечисленных свойств лиофобных золей. Издавна эти системы, типичными представителями которых являются растворы белков, целлюлозы, каучука, под названием лиофильных золей причислены также к золям, или, иначе, к псевдорастворам, т. е. системам гетерогенным, имеющим мицелляр-ное строение. Такому объединению этих систем послужила общность некоторых свойств, например неспособность частиц проходить через полупроницаемые мембраны (диализ и ультрафильтрация), сравнительно небольшая величина скорости диффузии и осмотического давления, особенно при малых концентрациях растворов высокомолекулярных соединений, а также способность под влиянием внешних факторов коагулировать и пеп-тизироваться. Основную роль в этом объединении сыграла близость степени дисперсности растворенного (взвешенного) компонента тех и других систем для золей 10 —10 смГ , для растворов ВМС примерно 10 —10 см . [c.151]


Смотреть страницы где упоминается термин Задачи физики белка: [c.94]    [c.77]    [c.576]    [c.127]    [c.313]    [c.148]    [c.9]    [c.233]   
Смотреть главы в:

Биофизика -> Задачи физики белка




ПОИСК







© 2025 chem21.info Реклама на сайте