Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость неорганических соединений в бензоле

    Растворимость неорганических соединений в бензоле, С Нб [c.397]

    Чувствительность реакций, при которых наблюдается образование осадка, часто можно повысить, прибавляя к раствору этиловый спирт, понижающий растворимость неорганических соединений. Повышение чувствительности достигается также при взбалтывании водной реакционной с.меси с какой либо не смешивающейся с водой органической жидкостью (бензол, четыреххлористый углерод и др.). Осадок собирается на границе раздела [c.27]


    Аналогичная закономерность наблюдается и в случае некоторых солей карбоновых кислот. Известно, что соли висмута,марганца, свинца, меди и некоторых других тяжелых металлов многих высших алифатических и алициклических кислот растворимы в таких гидрофобных растворителях, как эфир, бензол, растительные масла, тогда как соответствующие соли низших алифатических кислот, приближающиеся по своим свойствам к неорганическим соединениям ионного характера, в таких растворителях нерастворимы. [c.45]

    Объясните, почему большинство неорганических соединений более растворимы в воде, чем в органических растворителях, таких как бензол. [c.234]

    Еще алхимиками было сформулировано правило растворения веществ- подобное в подобном . Неорганические соединения, имеющие полярную или ионную структуру, растворяются в полярном растворителе-воде. Воск, парафин или битум неполярны, они растворимы в бензине, бензоле, ацетоне-жидкостях неполярных. И все-таки растворить бензин или машинное масло в воде можно. Но только в воде, содержащей изрядное количество ПАВ типа мыл. [c.147]

    Неорганические ковалентные соединения (1а) можно экстрагировать как органическими растворителями, не содержащими кислорода (четыреххлористый углерод, хлороформ, бензол и т. д.), так и кислородсодержащими растворителями (простые эфиры, спирты, сложные эфиры, кетоны и др.). Однако всегда следует использовать растворители первой группы, так как они экстрагируют ограниченный ряд неорганических веществ. Кислородсодержащие растворители требуются для извлечения ионных неорганических соединений (16). Благодаря основному характеру кислородного атома молекулы этих растворителей могут координировать с ионом металла или соединением, замещая при этом молекулы воды, с образованием оксониевых комплексных соединений, которые растворимы в органическом растворителе. Может показаться, что приведенная выше классификация экстрагируемых веществ не точна, поскольку неорганические ионные соединения, состоящие из ионных пар, экстрагируются не сами по себе, а в той или иной степени нуждаются во взаимодействии с растворителем таким образом, фактически экстрагируются органические соединения. Однако полезно провести грань между неорганическими и органическими ионными соединениями, ибо взаимодействие последних с органическим растворителем не происходит или по крайней мере осуществляется значительно слабее, чем с неорганическими соединениями. [c.45]


    Не потерял своего значения, в частности, тезис о том, что подобное растворяется в подобном , т. е. положение о том, что растворяемое вещество и растворитель должны быть веществами близкой химической природы. Как правило, полярные вещества растворяются в полярных растворителях, а неполярные — в неполярных. Многие соли неорганических кислот и другие полярные вещества хорошо растворимы в таких растворителях, как вода, низшие спирты и т. д., и малорастворимы в неполярных — бензоле, тетрахлориде углерода и др. Соединения с органическими анионами растворяются в неполярных растворителях, как правило, лучше, чем в воде. Углеводороды и другие неполярные вещества хорошо растворяются в неполярных растворителях, но не растворяются в полярных. Резкой границы, разумеется, не существует, так как не все вещества являются типично полярными или типично неполярными соединениями. [c.92]

    Органические примеси — масла, смола, непредельные соединения, поступают в сатуратор с коксовым газом и с отработанной или регенерированной серной кислотой Эти примеси образуют в сатураторе кислую смолку, покрывающую в виде пленки поверхность маточного раствора ванны, что увеличивает сопротивление проходу газа В кислой смолке содержится 74,8 % веществ, растворимых в бензоле, в остатке, нерастворимом в бензоле содержится, % золы 16,0, железа 5,8, циана 7,0 и серы 8,35 Повышенный расход регенерированной и отработанной кислоты может привести к вспениванию раствора и уносу пены с обратным газом Обычно эти кислоты вводят через сборник маточного раствора для дополнительной их регенерации С серной кислотой в ванну сатуратора могут поступать неорганические примеси в виде соединений мышьяка, кадмия, свинца, хлора, хрома, железа, меди, алюминия и азотной кислоты, которые проявляются по разному Содержащиеся в маточном растворе ионы трехвалентного Железа, алюминия и анионы хлора препятствуют росту кристаллов [c.233]

    Для детального изучения свойств и особенностей неорганической матрицы использовали органические соединения-примеси бензол, толуол, простейшие ароматические соединения, структурные спектры люминесценции которых в органической матрице хорошо известны фенол и анилин, имеющие электро-нодонорные группы, спектры люминесценции которых в органической матрице представляют собой широкие, практически бесструктурные полосы ароматические аминокислоты (/-фенилаланин, /-тирозин, /-триптофан), практически нерастворимые в органических растворителях, используемых в качестве матриц по методу Шпольского, и хорошо растворимые в воде. Выбор данных соединений был также обусловлен и практическими требованиями определение микроколичеств исследуемых веществ непосредственно в природных водах. [c.245]

    Неорганические соли обычно мало растворимы в органических растворителях, например, бензоле, толуоле, эфирах, четыреххлористом углероде и др. Наоборот, многие органические вещества хорощо растворимы в этих растворителях. Вопрос о влиянии природы растворителя на растворимость газов и твердых тел сложен и количественного разрешения еще не получил. К настоящему времени сформулировано ряд эмпирических правил, но они не свободны от исключений и носят скорее качественный характер. Так, полярные вещества (неорганические соли, мочевина и др.) хорошо растворяются в полярных растворителях (в воде, этиловом и метиловом спирте) и плохо в неполярных (бензоле, четыреххлористом углероде, сероуглероде). Наоборот, неполярные вещества (Нг, Не, углеводороды, нафталин и др.) лучше растворяются в неполярных растворителях. Если поля-рен только один из компонентов раствора, то растворимость, как правило, незначительная. Металлы лучше растворяются в металлах и обычно плохо растворяются в неметаллических элементах и соединениях. [c.144]

    Определите растворимость полученного Вами образца аспирина в бензоле и горячей воде и отметьте поведение водного раствора при охлаждении и потирании палочкой. Обратите внимание, что соединение растворяется в растворе холодного бикарбоната натрия и осаждается при добавлении кислот. Сравните таблетку продажного аспирина с полученным вами образцом. Сопоставьте растворимость в воде и бензоле и температуры плавления. В таблетках обычно имеются примеси, добавляемые в качестве связующего при таблетировании. Установите характер примеси — органическое это вещество или неорганическое. Какое безвредное вещество это может быть на основании определенных свойств  [c.238]

    Смешивается с водой и этанолом. Нерастворим в хлороформе и бензоле. В 100 г эфира растворяется 0,25 а глицерина. Легко растворяет многие органические и неорганические соединения, щелочи, многие соли. Растворяет aS04, мало растворимый в воде. [c.114]


    Краун-эфиры используют для улучшения растворимости неорганических солей в органических растворителях, в качестве меж-фазных катализаторов (см. с. 75), для генерации несольватироваи-ных анионов в органических растворителях. Например, при помощи [18]краун-6 можно растворить КОН в бензоле, ион ОН в этих условиях обладает большей активностью, чем в растворе воды или метанола. Соединение типа краун-эфиров играют большую роль в биологических системах — они осуществляют транспорт ионов через биологические мембраны (см. криптанды, гл. ХХ1П.А.4). [c.341]

    Органические красители. Сырьем для производства органических красителей обычно является каменноугольная смола. В большинстве случаев циклические углеводороды, полученные из смолы или же синтетическим путем (бензол, толуол, антрацен и их производные), являются основными веществами для производства очень многочисленных красителей. Технологические процессы могут включать сульфирование (серной кислотой), нитрование (серной и азотной кислотами), восстановление нитросоединений в аминосоединения (железной стружкой и кислотой, цинком, сернистым аммонием, сернистым натрием, сернистой кислотой и т. д.), диазотирование (солями азотистой кислоты и свободными кислотами), конденсацию (хлористым алюминием), окисление (хлором, азотной кислотой и т. д.), плавление (с едкилш щелочами), высаливание (хлористым натрием и т. д.), подщелачивание (едкими щелочами, едкой известью) и т. п. Образующиеся при этом сточные воды содержат в растворимом и нерастворимом виде различнейшие органические и неорганические соединения. Особенно часто встречаются следующие составные частг сстатки исхедных и промежуточных органич(Ских продуктов (бензол, анилин, циклические нитросоединения и т. д.), остатки готовых продуктов (красители), метиловый спирт, серная кислота и ее соли, глицерин, азотная кислота и ее соли, соли азотистой кислоты, хлористый натрий, известь, железные соли, хлористый алюминий, уксусная кислота и ее соли, а также вторичные продукты реакции этих веществ. [c.213]

    Сольват Ag 104 sHs Hj устойчив лишь ниже 22,6° . Обращает на себя внимание почти одинаковая растворимость Ag 104 в анилине и бензоле, а также исключительно высокая (для неорганического соединения) его растворимость в толуоле. Отмечалось, что при добавлении небольшого количества воды она еще увеличивается. [c.61]

    Развитие катализа ограничило область этого привилегированного положения переходных элементов в виде их твердых неорганических соединений реакциями окислительно-восстановительного класса. Такая закономерность наблюдается в катализе растворимыми ионами и их комплексными соединениями, а также природными и искусственными органическими веществами. Из этого делается вывод об обязательности наличия переходных элементов в виде основных компонентов или примесей для получения активных катализаторов редоксного типа. Одиночные исключения из этого правила, имевшиеся до середины 50-х годов, объяснялись загрязнениями. Так, в 30-х годах было показано, что способность металлической меди катализировать гидрирование бензола и олефинов объясняется наличием в ней небольших примесей. никеля, концентрирующегося на поверхности. Недавно к сходному выводу пришел Пурмаль, исследуя каталитическое разложение комплексными ионами меди. Оказалось, что в действительности основными носителями каталитической активности являются ионы железа, от которых полностью освободиться нелегко [11]. [c.16]

    При выборе органического растворителя можно руководствоваться некоторыми общими указаниями. Для экстракции неорганических солей из воды пригодны соединения с умеренной растворимостью в воде и небольшой молекулярной массой. Для некоторых солей и слабо растворяющихся в воде органических растворителей можно составить ряд в направлении уменьшающейся экстракционной способности хлороформ, о-дихлорбензол, бензол, толуол, че-тыреххлористый углерод, циклогексан, н-гексан. Для солей, образующих комплексы, и растворителей типа доноров (кетоны, эфиры) составить такой ряд для всех металлов невозможно. Известно, например, что для Ре , Аи и Оа существует следующая последовательность (начиная с высшей) метилизопропилкетон, метилизобутилкетон, фурфурол, этилацетат, этиловый эфир, изопентиловый спирт, изоамилацетат, р-хлорэтиловый эфир, изопропиловый эфир, углеводороды. Для других металлов будет совсем иная последовательность. Некоторые задачи были рассмотрены в 3 и 4. [c.425]

    Определение растворимости. Растворимость вещества в различных растворителях помогает сделать заключение о наличии в веществе тех или иных функциональных групп. Кроме того, определение растворимости позволяет подобрать подходящий растворитель для перекристаллизации вещества ( подобное растворяется в подобном ). Растворимость целесообразно исследовать в следующих растворителях вода 5%-ные растворы едкого натра, гидрокарбоиата натрия, соляной кислоты концентрированная серная кислота этиловый спирт бензол петролейный эфир уксусная кислота. В пробирку вносят каплю жидкого или 0,01 г твердого соединения и по каплям 0,2 мл растворителя. После каждой прибавленной порции растворителя смесь взбалтывают. Если соединение полностью растворимо, то его регистрируют как растворимое. Если вещество плохо растворяется или не растворяется при комнатной температуре, нагревают до кипения. В случае плохой растворимости в неорганических растворителях нерастворившееся вещество отделяют, а раствор нейтрализуют и наблюдают, не выделяется ли из него исходное соединение. Помутнение нейтрализуемого фильтрата указывает на свойства вещества кислые — если растворителем была щелочь или сода основные — кислый растворитель. При внесении вещества в раствор гидрокарбоната нужно обратить внимание, не выделяется ли двуокись углерода. [c.122]

    Зная коэффициент распределения вещества, легко определить, сколько раз целесообразно проводить экстракцию в данных условиях. При выборе экстрагента для извлечения веществ нз водных растворов следует руководствоваться следующими правилами. Вещества, плохо растворимые в воде, надо извлекать петролен-йым эфиром или бензином, вещества со средней растворимостью— бензолом или диэтиловым эфиром, а дорошо растворимые— полярными растворителями, например этилацетатом. Многие соли слабых органических кислот, например фенолов, или оснований, например пиридина, подвергаются гидролизу в такой степени, что соответствующие соединения хорошо экстрагируются рядом растворителей. Поэтому экстракцию других веществ в присутствии этих солей надо проводить, добавляя избыток сильных неорганических кислот или оснований, подавляющих гидролиз. [c.24]

    Пб(Т1 ) и 1Уб (РЬ " ) 2) устойчивость этих комплексов зависит от соотношения величины ионного радиуса катиона и размера полости макроцикличес-каро полиэфира 3) различные неорганические соли, содержащие катионы этих металлов, в присутствии макроциклических полиэфиров оказались растворимыми во многих органических растворителях, включая неполярные или малополярные растворители, такие,.как четыреххлористый углерод, бензол и циклогексан [ 2]. Макроциклические полиэфиры с этими специфическими свойствами Педерсен назвал краун-соединениями, исходя из их химической структуры и структуры комплексов, которые выглдцят как корона, увенчивающая ион. [c.12]

    Соединения, содержащие комбинированную (семиполярную) связь, занимают промежуточное положение в отношении летучести между соединениями, имеющими лишь ковалентные или электровалентные связи. Наиболее важные свойства, которые следует иметь в виду при делении молекул на электровалентные и ковалентные, следующие 1) электропроводность (для растворимых в воде соединений) 2) наличие или отсутствие стереоизомерии 3) степень летучести (электровалентные молекулы требуют затраты работы для отрыва их друг от друга и такие жидкости кипят при гораздо более высокой температуре, чем жидкости, образованные ковалентными соединениями) 4) растворимость в )лгле-водородных растворителях, т. е. нефтепродуктах или бензоле (неорганические соли нерастворимы, органические соединения растворимы) 5) тип упаковки молекул в твердом веществе (рентгеновский анализ кристаллов). Ионизация предполагает плотную упаковку (соли), в то время как ковалентные молекулы в кристаллическом состоянии имеют рыхлую структуру (MgO и СаО электро-валентны и имеют плотную структуру ВеО и aS ковалентны и обладают рыхлой структурой). [c.552]

    Экстракция твердых веществ является первой ступенью изучения органических компонентов высушенных листьев и коры, а также некоторых горных пород и почв. Ткани растений можно иногда удовлетворительно экстрагировать в делительной воронке, но для более тяжелых и тонкоизмельченных неорганических материалов обычно требуется экстракция в приборе Сокслета. С целью экстракции возможно большего количества органического материала необходимо выбрать растворитель, в котором легко растворимы как умеренно полярные, так и неполярные соединения (например, алканы с длинной цепью). Неполярный растворитель, такой, как гексан, не годится для этого, поскольку экстракция многих полярных соединений (например, фенолов) будет неэффективной. Вместе с тем алканы с длинной цепью будут плохо экстрагироваться метанолом. Хлороформ был бы хорошим компромиссом, но при анализе следов требуется специальная очистка его. Хорошим экстрагентом оказывается смесь бензола с метанолом. Выбор растворителя для природных образцов не является единственным затруднением— даже тонко измельченные твердые вещества, первоначально свободно диспергированные в экстракционной гильзе, могут образовывать плотную массу, в которой контакт фаз будет затруднен. Поэтому часто проводят ультразвуковую экстракцию диспергированного в растворителе неорганического материала, помещая стакан с суспензией в ультразвуковую камеру на несколько минут. Это лучше всего делать после приблизительно часового перемешивания твердого вещества с растворителем, при этом необходимо принять меры предосторож-, ности, чтобы в результате использования звуковой энергии не произошел нежелательный синтез микроколичеств примесей на уровне следовых количеств вследствие разложения растворителя однако для смеси бензола с метанолом такая опасность исключена. [c.515]

    Описан способ полимеризации акриламида в целлюлозных волокнах инициируемой окислительно-восстановительной системой, в которой ион Се я вляется окислителем, а целлюлоза — восстановителем Рекомендовано проводить полимеризацию в присутствии катализатора, состоящего из кобальтовой соли неорганической кислоты, растворимой в одном из компонентов реакционной среды, и восстановителя (неионизируемое органическое соединение, окисляющее соль кобальта) Акриламид полимеризуют в присутствии 0,05—1% боразановПредложена также каталитическая смесь, содержащая растворимый в воде трет.-амин и растворимый в воде неорганический персульфат Для получения изотактического полиакриламида полимеризацию акриламида проводят в а роматических углеводородах, эфирах или жидком аммиаке при температурах ниже 40° С (до — 100° С) в присутствии катализаторов ионной полимеризации (металлические 1,1, Na и др.) и в отсутствие влаги и кислорода Исследована анионная полимеризация акриламида в бензоле [c.732]

    При выборе метода выделения фенола, встречающегося в природе, необходимо учитывать не только свойства соединения, как упоминалось выше, но также и химический состав биологического источника. Растительный материал состоит в основном из нерастворимой целлюлозы и лигнина, а в свежем виде может содержать также большое количество (70—80%) воды. Кроме того, могут присутствовать хлорофилл, воски, жиры, терпены, сложные эфиры, растворимые в воде соли, гемицеллюлозы, сахара и аминокислоты. Из свежего или сухого материала, как правило, сначала выделяют с помощью неполярного органического растворителя (например, петролейного эфира, гексана, бензола, хлороформа или эфира) нефенольные, неполярные вещества. Фенольные соединения можно затем выделить путем экстракции ацетоном, этанолом, метанолом или водой, причем выбор растворителя определяется числом гидроксильных групп и остатков сахара в молекуле. В некоторых случаях растительные материалы подвергаются непосредственной экстракции щелочью, но это не всегда приводит к хорошим результатам. Фенолы из растительного материала затем очищаются путем ряда экстракций и осаждений. С этой целью сырой материал переносят в несмешивающийся растворитель, такой, как эфир, бутанол или этилацетат, и смесь последовательно экстрагируют разбавленными растворами оснований в порядке возрастания активности сначала ацетатом натрия (для удаления сильных кислот), а затем бикарбонатом натрия, карбонатом натрия и едким натром. Водные экстракты, содержащие искомые продукты, подкисляют и вновь экстрагируют бутанолом, эфиром или этилаце-татом. Процедуру повторяют до получения кристаллического продукта. Подобное фракционирование в настоящее время осуществляется путем автоматической подачи несмешивающихся растворителей по принципу противотока (Хёрхаммер и Вагнер [9]). Фенолы можно отделять от других продуктов, содержащихся в растениях, путем осаждения с помощью нейтрального или основного ацетата свинца. Этим методом до некоторой степени отделяются о-диоксисоединения (дают осадок) от монозамещенных соединений (не дают осадка). Соли свинца разлагают серной кислотой, сероводородом или катионообменными смолами и свободные с )енолы элюируют из неорганических солей спиртом. [c.36]

    Предложено много путей промышленного применения соединений Со(1П), самый важный — использование их в качестве катализаторов для разнообразных реакций. Алкилароматические соеди-. нения, например толуол или бензол, окисляются в жидкой фазе газообразным кислородом или воздухом до альдегидов или кпслот в присутствии ацетилацетоната Со (III). Скорость реакции периодически увеличивают путем прибавления к системе неорганического сорбента, AI2O3 или кизельгура это удваивает также и выход Ацетилацетонат кобальта (III) и галогениды алюмннийалкила катализируют полимеризацию бутадиена, давая полимеры с узким распределением молекулярных весов, если катализатор выдерживается в течение определенного времени до начала полимеризации ". Утверждают, что по крайней мере на 93°/о образуется цис-структура ". Ацетилацетонат Со(1И) особенно интересен как компонент растворимой каталитической системы для стереоспецифической полимеризации диенов (стр. 363). Эта же каталитическая композиция была исследована для сополимеризации бутадиена и изопрена в интервале температур от —20 до - -50°С. Вместо алюминиевых соединений как сокатализатор был использован также амилнатрий. Полимеризацию бутадиена проводили при 20° С и давлении 1,5 ат в растворе пентана в течение 20 ч .  [c.318]

    Определение растворимости. Растворимость вещества в различных растворителях помогает сделать заключение о наличии в веществе тех или иных функциональных групп. Кроме того, определение растворимости позволяет подобрать подходящий растворитель для перекристаллизации вещества ( подобное растворяется в подобном ). Растворимость целесообразно исследовать в следующих растворителях вода 5%-ные растворы едкого натра, гидрокарбоната натрия, соляной кислоты концентрированная серная кислота этиловый спирт бензол петролейный эфир уксусная кислота. В пробирку вносят одну каплю жидкого или 0,01 г твердого соединения и по каплям 0,2 мл растворителя. После каждой прибавленной порции растворителя пробирку взбалтывают. Если соединение полностью растворимо, то его регистрируют как растворимое. Если вещество плохо растворяется или не растворяется при комнатной температуре, нагревают до кипения. В случае плохой растворимости в неорганических растворителях нерастворившееся вещество отделяют, а раствор нейтрализуют и наблюдают, не выде- [c.122]

    К третьей группе относятся гетерополярные органические соединения, которые можно определить как органические соединения с типично-неорганическим характером. Это—соли основа1 ий и кислот, меркаптаны и фенолы, свободные сульфокислоты. Они, подобно гетерополярным не-органическид соединениям, обладают очень высокими температурами кипения и не перегоняются без разложения, так как их температуры кипения лежат значительно выше температур разложения. Подобно неорганическим солям очень многие из этих соединений растворимы в воде в типичных органических растворителях, как эфир и бензол, они за очень немногими исключениями нерастворимы. Так в воде растворяется большинство щелочных солей кислот, многие галоидоводородные соли оснований и ряд сульфокислот. [c.213]

    Замена аниона в соединениях типа R2TIX. Эти соединения легко обменивают свой анион при действии органических и неорганических солей. Реакцию чаще всего ведут в водных растворах. Например, при действии фтористого серебра на хлориды и бромиды диалкилталлия образуются фториды диалкилталлия [81]. Они очень хорошо растворимы в воде и метаноле менее растворимы в этаноле и практически нерастворимы в эфире и бензоле. [c.459]

    Качественные предсказания растворимости с большей вероятностью могут быть сделаны на основании представлений о химическом подобии компонентов, нежели по величинам в pa TBopnie-лей. Соли, как правило, плохо растворимы в углеводородах и их галогенпроизводных (одно из исключений — перхлорат серебра в бензоле и толуоле), лучше — в спиртах, амидах, сульфоКсидах, кетонах, нитропроизводных и пр. Соли щелочных и щелочноземельных металлов обычно растворимы хуже в органических растворителях, нежели аналогичные соли элементов, склонных к образованию координационных соединений с растворителем. В последнее время нашли применение некоторые апротонные растворители, обеспечивающие довольно высокую растворимость многих неорганических солей пропиленкарбонат, N-метилацетамид, N-метилпир-ролидон, гексаметилфосфортриамид и др. [c.82]


Смотреть страницы где упоминается термин Растворимость неорганических соединений в бензоле: [c.266]    [c.83]    [c.92]    [c.201]    [c.303]    [c.482]    [c.193]    [c.95]    [c.201]    [c.303]   
Смотреть главы в:

Новый справочник химика и технолога Химическое равновесие -> Растворимость неорганических соединений в бензоле




ПОИСК





Смотрите так же термины и статьи:

Неорганический бензол



© 2024 chem21.info Реклама на сайте