Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь в растворителях и ее влияние

    К первой группе относятся вода, спирты, карбоновые кислоты, фенолы, аммиак, амины. Эти растворители называют протонными, так как они имеют атомы водорода, легко отщепляющиеся в виде протонов или по крайней мере способные участвовать в создании водородных связей. Подобное влияние растворителя стабилизует нуклеофильные растворенные частицы. [c.168]


    Пространственные затруднения при введении заместителя в орто-по-ложение бензольного ядра дестабилизируют гидразонную форму (14), и влияние растворителя оказывается аномальным полярные, образующие водородные связи растворители, типичные для гидразонной [c.113]

    На растворяющую способность полярных растворителей су — и ес гвенное влияние оказывают тип, количество и место расположения функциональных групп, способность их образовывать водородные связи, а также молекулярная масса и химическая структура (ациклическое или циклическое строение, изомерия, симметричность и др.) основной [c.223]

    В принципе можно рассчитать из известных значений дх, как показано на с. 23. Для грубой оценки можно считать, что относительные константы экстракции для различных катионов и неполярных растворителей очень близки между собой. Это справедливо лишь в редких случаях только как первое приближение и является слишком большим упрощением в других случаях. Часто реагент или одна из ионных пар, участвующих в истинной реакции, присутствуют в концентрации, близкой к насыщению. Тогда следует ожидать отклонений от идеального поведения. Более того, полярность и способность растворителя к образованию водородных связей по-разному влияет на различные анионы. Известны константы селективности /Сх— для конкурентной экстракции хлорида по отношению к бромиду, иодиду и перхлорату из воды в 11 растворителях [121] и для хлорида относительно цианида в 8 растворителях [122]. Как ожидалось, /Сс1—>ск изменяется незначительно, причем максимальный интервал изменения от 0,9 (вода/г ыс-1,2-дихлорэтан) до 3,1 (вода/бензонитрил). Специфичное влияние растворителя более ярко выражено для серий анионов, сильно различающихся по липофильности [121]. Следует особо отметить, что гидроксилсодержащие растворители выравнивают различия  [c.34]

    Водородная связь играет большую роль в процессах растворения, так как растворимость зависит и от способности вещества давать водородные связи с растворителем. Например, сахар, молекулы которого имеют много ОН-групп, способных образовывать водородные связи, очень хорошо растворим в воде. Наоборот, отсутствием влияния водородной связи можно объяснить те случаи, когда полярные соединения не растворимы в воде. Так, полярный иодистый этил хорошо растворяет неполярный нафталин, а сам не растворяется в таком полярном растворителе, как вода. [c.134]


    Влияние природы растворителя можно продемонстрировать и на следующем примере. Стремление к упорядочению в ЫНз (ж) меньше, чем в Н2О (ж), так как в отличие от молекулы воды в молекуле аммиака лишь одна неподе-ленная пара электронов кроме того, аммиак не может образовать трехмерные агрегаты, да и водородные связи в нем слабее, чем в воде. [c.135]

    На ионизацию электролита определенное влияние оказывает полярность молекул растворителя, их способность к донорно-акцепторному и дативному взаимодействию с растворенным веществом и ионами, способность молекул растворителя образовать водородные связи. Выделяющаяся при сольватации ионов энергия часто с избытком компенсирует энергию, необходимую для разрушения кристаллической решетки и разрыва связей в молекулах растворяемых веществ. [c.184]

    Реакции нуклеофильного замещения проводят в растворах, поэтому выбору растворителя придается большое значение. Влияние растворителя на протекание и механизм реакций нуклеофильного замещения в значительной степени зависит от его сольватирующей способности и особенно от способности к специфической сольватации, приводящей к образованию водородных связей и донорно-акцепторных комплексов. [c.95]

    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]

    В ЭТИХ случаях главным признаком взаимной растворимости является не подобие двух жидкостей, а наоборот, резкое их различие. Вещества различных групп хорошо смешиваются между собой, но их растворимость не подчиняется закону Рауля, и величина 7 не может быть подсчитана по уравнению Гильдебранда. Смеси таких жидкостей часто дают азеотропы и обладают другими особенностями. Способность растворителей к образованию водородных связей играет большую роль в их влиянии на силу кислот, оснований и солей (см. гл. VI и VII). [c.222]

    Основания, способные к образованию водородной связи в качестве доноров протона (содержащие водород) и не способные к их образованию (не содержащие водорода), по-разному взаимодействуют с растворителями и эго взаимодействие сопровождается различным выделением энергии. Энергия сольватации ионов основания зависит от их химической природы. Можно ожидать большого различия во влиянии растворителя на алифатические и ароматические основания, которое будет следствием различного распределения заряда в катионе. [c.353]

    В большей степени подвержены влиянию растворителей и температуры величины химических сдвигов протонов, связанных непосредственно с атомами кислорода и азота. Смещение сигналов этих протонов при изменении концентрации и температуры иногда может достигать 2—3 м. д. и более. Это объясняется образованием межмолекулярных водородных связей и протонным обменом (см. раздел 6.4.2). В обоих случаях вблизи протона происходит существенное изменение электронного окружения. [c.67]

    Подобно протонам, связанным с атомами кислорода и азота, атом водорода, входящий в состав 5Н-группы, также является активным , т. е. подвижным, и на его положение в спектре ПМР будут оказывать влияние те же факторы растворитель, температура, концентрация и т. п. Например, резонансный сигнал протона 5Н-группы в этилмеркаптане при переходе от чистой жидкости к раствору в ССЦ смещается в более сильное поле. Это можно объяснить, если допустить, что в чистой жидкости возникают водородные связи. Однако этот сдвиг невелик и составляет приблизительно 0,4—0,5 м. д. [c.135]

    Влияние среды, в которой протекает реакция. При химических реакциях в растворе большое в.лияние на течение реакции и на ее скорость оказывает природа растворителя. Последний не может рассматриваться как индифферентная среда во многих случаях растворитель играет роль активного участника реакции. Часто растворитель оказывает каталитическое воздействие на протекающий в растворе химический процесс (см. ниже). Очень большое значение имеют и водородные связи, возможные между молекулами растворителя и растворенного вещества. Влияние этих связей на скорость реакции в растворе в различных случаях неодинаково. [c.133]


    Важнейшим фактором, связывающим влияние растворителя со скоростью реакции, является сольватация реагирующих веществ или активированного комплекса или образование водородной связи. [c.101]

    Так как и диэлектрическая проницаемость ег, и дипольный момент ц являются важными взаимодополняющими характеристиками растворителей, рекомендовалось классифицировать последние в соответствии с их электростатическими коэффициентами ЕР (определяемыми как произведение Сг на ц), которые учитывают влияние и того и другого параметра [101]. С учетом величин ЕР и структуры органических растворителей предлагалось подразделять их на 4 группы углеводородные растворители ЕР—О—7-10 Кл-м), электронодонорные растворители ( = (7—70) 10 Кл-м), гидроксильные растворители ЕР = = (50—170)-10 ° Кл-м) и биполярные растворители, не являющиеся донорами водородных связей (растворители-НДВС) ( 170-10-30 Кл-м) [99 Ю1]. [c.100]

    В применении к олигопептидам взятый из обихода термин денатурация , означающий для белков разупорядочение их глобулярной конформации, употребителен меньше, чем термин разупорядочение или превращение спирали в неупорядоченные клубки . Имеющие основной или кислый характер боковые радикалы стабилизуют а-спиральные конформации в растворе при тех значениях pH, когда функциональная группа бокового радикала находится в неионизованной форме. Однако изменение pH приводит к потере упорядоченности. Изучение поведения поли ( -аминокислот) в спиралегенных растворителях позволило получить точную информацию о влиянии добавок разрушающих водородную связь растворителей (например, галогеноуксусных кислот), так как изменение упорядоченной конформации в сторону неупорядоченности может быть надежно прослежено с помощью спектроскопических [c.432]

    Маловероятно, чтобы отсутствие зависимости термодинамических свойств переходного состояния от состава растворителя, наблюдаемое при сольволитических реакциях в водно-спиртовых смесях, представляло собой общий случай. В инертных растворителях добавление небольших количеств доноров водородной связи оказывает влияние на реакции, родственные сольволизу, причем это влияние трудно объяснить чем-либо иным, кроме образования водородной связи с зарождающимся ионом X . Так, перегруппировка камфенгидрохлорида в нитробензоле ускоряется хлористым водородом и фенолами. Влияние фенолов тем сильнее, чем выше их кислотг ность [79]. [c.327]

    Часто полагают, будто в газожидкостной хроматографии распределение между газовой и жидкой фазами зависит только от летучести вещества и его растворимости в жидкой фазе, однако уже с самых первых работ (1952 г.) [71] стало ясно, что важную роль играют водородные связи между растворителем и растворенным веществом. Сравнивая поведение первичных, вторичных и третичных аминов на парафинах и луброле-МО (продукт конденсации окиси полиэтилена и длинноцепочечного спирта), Джеймс и Мартин обнаружили корреляцию между удерживаемым объемом и способностью образовывать водородные связи. Чтобы объяснить большее удерживание триметил-амина на луброле, высказано предположение о том, что ме-тильные группы имеют достаточную активность для образования водородных связей. Этого влияния не наблюдалось для высших гомологов (сравни глицин). По мнению авторов, аналогичные взаимодействия имеют место между жидкой фазой и носителем, а также носителем и разделяемыми веществами. Поэтому на протяжении всей главы авторы решили употреблять общий термин газовая хроматография (ГХ), а не газожидкостная хроматография (ГЖХ) — при использовании последнего подразумевается, что хроматография в системе газ — твердое вещество протекает по совершенно иным механизмам. [c.125]

    Как же связаны изложеннные соображения со структурой нативного белка Иметь представление о структуре растворителя и о природе его взаимодействия с белком необходимо для того, чтобы понять, какое огромное влияние может оказывать растворитель на конформацию белковых молекул. То обстоятельство, что относительно низких концентраций мочевины или гуанидинхлорида (например, 1 молекула мочевины на 5 -s- 10 молекул HjO) часто оказывается достаточно для полного разрушения нативной структуры белка и перехода его в неупорядоченную конформацию, хорошо иллюстрирует чувствительность структуры белковых молекул к составу раствора. С другой стороны, растворитель может вызывать структурные изменения, приводящие к формированию иного, уникального, высокоупорядоченного состояния. Для этой цели, например, может быть ис- пользован 2-хлорэтанол. Белки растворимы в нем, и хотя это полярный растворитель, он обладает гораздо более слабой, чем вода, способностью образовывать водородные связи. Например, рибонуклеаза в 2-хлорэтаноле принимает другую, как полагают, значительно более совершенную спиральную конформацию, чем в воде (см. Doty, 1960). Сходные результаты были получены и для других белков. Их можно объяснить тем, что в бедных водородными связями растворителях легче образуются внутримолекулярные водородные связи. Все это еще раз подчеркивает, как велико влияние растворителя на конформацию. [c.261]

    Лдмсо < 1 В растворителях, обогащенных ДМСО, концентрация свободной воды не достаточна для образования Н-связей между участниками химической реакции и растворителем напротив, в области О < Хдмсо < 0.33 влияние водородной связи растворителя на устойчивость мультилиганд-ного комплекса велико. Образование водородной связи возможно как между свободным лигандом и [c.28]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Эксперименты с менее полярными растворителями не обнаруживают влияния их природы на функцию карбоксильной группы. Следует ожидать образоват я водородной связи между карбоксильной группой и имидазо- /Н-, лий-ионом. Действительно, для цвиттер-иона од-нозначно показано существование водородной свя- зи. Оказалось, что реакция ОН- с протоном, уча- Т О [c.227]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Органические растворители, применяемые при изучении про-толитических реакций, могут быть классифицированы по разным признакам. По влиянию на относительную силу протолитов различают дифференцирующие и нивелирующие растворители. Дифференцирующее действие растворителя зависит от ряда факторов кислотно—основных его свойств, диэлектрической проницаемости, сольватирующей способности, способности к образованию водородных связей и т.д. [c.89]

    Влияние растворителя на инфракрасный спектр проявляется по-разному. Чаще всего спектры вещества в твердом состоянии сложнее, чем в растворе расщепление линий в кристаллическом веществе по сравнению с раствором в большинстве случаев объясняют наличием в кристаллическом состоянии межмолекулярного взаимодействия, причиной которого служит то, что в узлах кристаллической решетки находятся ионы, а не нейтральные молекулы. Это явление аналогично расщеплению линий в спектре вещества под действием электростатического поля. Кроме расщепления линий, часто отмечают их смещение в растворе, например, у комплексов М(5а1с11т)2. Сдвиг линий, соответствующих колебаниям в растворе по сравнению с положением линий кристаллического образца, по-видимому, обусловлено образованием в твердом состоянии водородных связей. В случае, если образования водородных связей не наблюдается, полосы могут остаться не смещенными. Это, например, имеет место у ди (К-метилса-лицилальдимино)бериллия (табл. 94, 95). [c.331]

    Автор с Л. М. Куциной систематически исследовал влияние растворителей — спиртов, диоксана и ацетона — на положение частоты СО-группы уксусной, монохлоруксусной и трихлоруксусной кислот. По частотам С0-Г11упп можно судить о том, в каком состоянии находится кислота в растворах. Частота 1660 см соответствует СО-группе в димерах уксусной кислоты, частота 1710 см"1 СО-группы характерна для молекулы кислоты, связанной водородной связью с другой молекулой в разомкнутом соединении, наконец, частота 1745 см соответствует свободной СО-группе уксусной кислоты. [c.254]

    Таким образом, кислоты в растворах взаимодействуют с растворителем, это взаимодействие обязано водородной связи. Проведенное исследование показало, что смещение ассоциированной полосы ОВ-группы ряда карбоновых кислот различной силы под влиянием ацетона и диоксана примерно одинаково и не зависит от силы кислоты. В то же время установлено, что величина смещенпя частоты ОВ-грунпы многих кислот под влиянием растворителя тем больше, чем сильнее его основность. Это согласуется с тем обстоятельством, что изменение силы ряда кислот одной природы под влиянием данного растворителя в первом приближении постоянно (см. гл. VI). [c.256]

    Между силой кислоты и прочностью водородной связи, как правило, нет параллелизма. Константы нестойкости соединения ряда карбоновых кислот различной силы (СНдСООН, СН аСООН, СНа СООН, G lg OOH) с ацетоном и ацетонитрилом — одного порядка. Константы нестойкости соединения этих кислот с нитробензолом несколько больше, но также мало зависят от силы кислоты. Эти же кислоты дают со спиртами соединения состава ABj, очень мало различающиеся по прочности. Данные о влиянии растворителей на положение OD-полосы в спектре ряда дейтерированных хлорзамещенных карбоновых кислот говорят о том же. Изменение положения OD-полосы в спектрах кислот в различных растворителях не зависит от силы этих кислот. [c.293]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]

    Водородная связь играет большую роль и в процессах растворения, так как растворимость зависит и от способности вещества давать водородные связи с растворителем. При этом часто образуются продукты их взаимодействия — сольваты. В качестве примера можно указать на растворение спиртов в воде. Этот процесс сопровождается выделением теплоты и уменьшением объема, т. е. признаками, свидетельствующими об образовании соединений. В подобных случаях нельзя говорить об образовании сольватов за счет электростатического притяжения ионами дипольных молекул растворителя, так как речь идет о растворении неионизирующихся соединений. Отсутствием влияния водородной связи можно объяснить и те сЛучаи, когда полярные соединения не растворимы в воде. Так, полярный иодистый этил хорошо растворяет неполярный нафталин, а сам не растворяется в таком полярном растворителе, как вода. [c.236]

    Обратим внимание на интересные случаи разделения следующих двух пар изомеров. Во-первых, дезглюкохейротоксин адсорбируется на гидрофобной поверхности из полярного растворителя сильнее конваллятоксина, что связано с более выгодным расположением сахарного остатка по отношению к полярному элюенту во втором случае. Во-вторых, ланатозид В адсорбируется сильнее изомерного ему ланатозида С. Сильное увеличение 1 для ланатозида В связано, по-видимому, с рассмотренным выше гидрофобизую-щим влиянием внутримолекулярной водородной связи, в данном случае между гидроксильной группой в положении 16 [см. формулу стерана (1.4)] и лактонным кольцом. В ланатозиде С соответствующая гидроксильная группа расположена у кольца С стероидной части молекулы, т. е. далеко от лактонного кольца  [c.321]

    Ассоциация молекул и структура жидкостей. Молекулы таких жиД Хостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)2, (НзО) , (СНзОН)2 и т. д. Однако ассоциация на этом не останавливается, образуются тримеры, тетрамеры и т. д., пока тепловое движение не разрушает образовавшеюся кольца и]ш цепочки молекул. Энергия на одну водородную связь в таких цепочках возрастает с числом молекул в димере воды 26,4, в тримере 28,4 кДж/моль, Для фтористого водорода в цепочках (НР)2, (НР)з, (НР)4 и (НР)5 и в кольце (НР)б на одну водородную связь приходится 28,9 32,5, 34,6 36,9 и 39,5 кДж/моль соответственно [к-32]. Когда тепловое движение понижено (в кристалле), через водородные связи создается кристал тическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две донорные Н-связи и через два атома Н — две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (б.иижний порядок). Эта структура воды определяет многие свойства воды и растворов. Структурированы и спирты, но по-иному, так как молекула спирта образует одну донорную и одну акцепторную связь. Эта структура разрушается тепловым движением значительно легче. Возможно структурирование и смещанных растворителей, как водно-спиртовые смеси и др. Оказывая особое влияние на структуру воды, водородные связи налагают отпечаток на всю термодинамику водных растворов, делая воду уникальным по свойствам растворителем. [c.274]

    Во многих случаях на направление атаки оказывает влияние природа растворителя. Чем более свободен нуклеофил, тем больше вероятность его атаки более электроотрицательным атомом, но чем в большей степени этот атом связан либо с молекулами растворителя, либо с положительными противоионамп, тем выше вероятность атаки менее электроотрицательным атомом. В протонных растворителях степень сольватации с участием водородных связей более электроотрицательного атома выше, чем степень сольватации атома, обладающего меньшей электроотрицательностью. В полярных апротонных растворителях сольватация обоих атомов невелика, но такие растворители весьма эффективно сольватируют катион. Таким образом, в полярном апротонном растворителе более электроотрицательная часть нуклеофила свободнее от взаимодействия как с растворителем, так и с катионом, поэтому переход от протонных к полярным апротонным растворителям часто приводит к возрастанию роли атаки более электроотрицательным атомом. Примером может служить атака -нафтолята натрия на бензилбромид, в результате которой в диметилсульфоксиде образуется продукт 0-алкилирования с выходом 95%, а в 2,2,2-трифтороэтаноле —продукт С-алкилирования с выходом 85 % [364]. Изменение природы катиона от Li+ к Na+ и К+ (в неполярных растворителях) также способствует увеличению выхода продукта 0-алкилиро-вания за счет продукта С-алкилирования [365], что аналогично использованию краун-эфиров, которые хорошо сольватируют катионы (т. 1, разд. 3.2) (в зтом случае ион К " делает нуклеофил более свободным, чем ион Li+) [366]. [c.98]

    Студни похожи по свойствам на гели, однако отличаются от них по строению тем, что сплошная пространственная сетка имеет в сечении молекулярные размеры и образована не вандерваальсовыми, а химическими или водородными связями. Таким образом, студни можно рассматривать как гомогенные системы, в отличие от гетерогенных гелей. Иная природа связей определяет и структурно-механические свойства студни, в отличие от гелей, не тик-сотропны. Действительно, если химические связи окажутся при механическом воздействии разорванными, то они уже не восстановятся, поскольку в местах разрыва изменится состав в результате взаимодействия с растворителем. Студни, образованные полимерами, не обладают пластическими свойствами, но по упругости и эластичности они сходны с гелями и влияние различных факторов на эти свойства аналогично рассмотренному выше для ненабухших полимеров и гелей. [c.314]


Смотреть страницы где упоминается термин Водородная связь в растворителях и ее влияние: [c.104]    [c.240]    [c.662]    [c.423]    [c.154]    [c.347]    [c.350]    [c.648]    [c.341]    [c.58]   
Влияние растворителя на скорость и механизм химических реакций (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь

связи растворителей



© 2025 chem21.info Реклама на сайте