Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические заместители, определение

    В качестве реакционной среды при определении связи Si—Si для соединений с высшими органическими заместителями можно употреблять этиловый спирт или ацетон, однако кремни йор га ни-ческие соединения не всегда хорошо растворяются в этих растворителях. Лучшие результаты были получены при применении влажного пиперидина [838], хорошая растворяющая способность [c.219]


    Если известен тип органического заместителя в жидком силиконовом полимере, то для установления приблизительной степени замещения органическими радикалами можно использовать и некоторые определения физических констант так, по значению плотности жидких метилсилоксанов можно определить среднее соотношение Я/Ы пото- [c.223]

    Изучение влияния заместителей в молекулах органических веществ на скорость, предэкспоненциальный множитель и энергию активации способствует пониманию механизма протекания реакции. Заместители определенным образом влияют на распределение электронной плотности в молекуле. Протеканию целого ряда реакций способствует увеличение электронной плотности у определенного атома, который играет роль реакционного центра. Повышение электронной плотности способствует понижению энергии активации и тем самым увеличению скорости химической реакции. Например, введение метильной группы в молекулу пиридина способствует увеличению электронной плотности на атоме азота, а это в свою очередь делает его более реакционноспособным. Скорость реакции метилпиридина с метилиодидом оказывается выше, чем реакции пиридина. [c.188]

    К сожалению, результаты физико-химических исследований строения более сложных карбенов существенно менее полны, что связано с трудностью получения и неоднозначностью интерпретации соответствующих экспериментальных данных. Вместе с тем, основываясь на достаточно полной и непротиворечивой картине строения трехатомных карбенов, можно с определенной уверенностью описать предполагаемое электронное строение некоторых карбенов со сложными органическими заместителями. Так, диалкильные и диарильные производные, не содержащие в а-положении электроотрицательных заместителей с неподеленными парами электронов, должны напоминать метилен, поскольку влияние подобных заместителей на энергию и форму о- и р-орбиталей невелико. Иными словами, основное состояние таких карбенов будет триплетным, что соответствует данным ЭПР и неэмпирических расчетов (см., например, [25, 453]). [c.60]

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (1П, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с нонами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорных заместителей в молекулу органического соединения [c.95]


    На рис. 5.1 приведены некоторые доступные синтетические акцепторные соединения. Можно ли использовать такие органические краун-эфиры в качестве аналогов ферментов для разделения энантиомеров (или рацемических смесей) Крам и др. сообщили, что хиральные комплексы краун-эфиров действительно обладают этим удивительным свойством селективно связывать один из антиподов аминокислотных производных [134—136]. При создании акцепторных молекул неоценимую помощь оказывают молекулярные модели Кори — Полинга — Колтуна [137, 138]. Пространственные модели дают возможность находить акцепторные структуры, способные связывать в качестве доноров определенные аминокислоты. Например, главное при создании акцептора — это вопрос влияния взаимного расположения центров связывания на их связывающую снособность. Другая проблема заключается во введении заместителей в такие положения, которые направлены к функциональным или связывающим центрам до-норных соединений [137]. [c.267]

    При изучении органической химии важно усвоить следующие общие принципы название должно описывать структурную формулу в основе названия лежит главная цепь, выбор которой регулируется определенными правилами атомы главной цепи нумеруют в определенном порядке положение боковых цепей и замещающих групп указывается номером углеродного атома главной цепи, при котором стоит заместитель в заместительной номенклатуре не следует использовать греческие буквы, а в рациональной номенклатуре — арабские цифры. [c.223]

    Открытие стереоизомерии показало, что в определенных случаях и структурная формула не полностью характеризует органическое вещество чтобы охарактеризовать стереоизомеры, необходимо знать их пространственную конфигурацию. При этом исторически сложилось так, что слово конфигурация вошло в органическую химию как довольно узко ограниченное понятие. Говоря о конфигурации, имеют в виду пространственное расположение заместителей вокруг центра, обусловливающего возможность существования зеркальных форм, либо пространственное расположение заместителей относительно я-связи или относительно цикла. Таким образом, знание конфигурации совсем не равноценно раскрытию точной пространственной структуры всей молекулы в целом оно относится только к упомянутым выше особым точкам в молекуле. [c.85]

    Рис, 1. Схема для определения старшинства заместителей в органических соединениях. [c.289]

    Оказалось, что удобно давать названия определен- метан ным группам, которые часто встречаются в органических соединениях. Поэтому, прежде чем рассмотреть номенклатурные системы, остановимся на названиях одновалентных остатков алканов без одного водородного атома (условные, формальные группы, их называют еще углеводородными заместителями или радикалами). [c.22]

    Выбор наиболее подходящей жидкой фазы облегчается рядом опытных закономерностей. Установлено, что величины удерживаемых объемов на данной жидкой фазе изменяются в определенной последовательности при переходе в органическом соединении от одного заместителя к другому. Например, на вазелиновом масле удерживаемые объемы для соединения С НцХ, где X — различные заместители, возрастают при переходе от одного заместителя к другому в следующем порядке  [c.217]

    Константа спин-спинового взаимодействия (7) выражается в герцах и определяется расстоянием между компонентами мультиплетов спектров первого порядка. В спектрах высших порядков определение констант спин-спинового взаимодействия в ряде случаев затруднено и требует привлечения специальных расчетов с использованием ЭВМ. Значения констант спин-спинового взаимодействия зависят в основном от электроотрицательности заместителей и взаимного пространственного расположения групп взаимодействующих ядер, в частности от числа химических связей, отделяющих эти ядра, и от углов между химическими связями. Для большинства органических веществ константы протон-протонного спин-спинового взаимодействия имеют значения от О до 16 Гц. [c.52]

    Структурные фазы этого вида называются мезоморфными (промежуточными формами) или жидкокристаллическими по определению энтузиастов, работающих в данной области, это — четвертое состояние материи. Органические соединения, образующие жидкие кристаллы, имеют длинные и узкие молекулы с полярной группой типа — ОК или — СООК у одного или обоих концов и во многих случаях с умеренно активной группой типа —С=С—, —С=Ы— или —Ы—О—Ы— в центре. Мезо-морфизм возможен только при наличии заместителя в иара-положении. Молекулы стремятся располагаться параллельно друг другу в виде скоплений или кристал- [c.457]

    Чтобы избежать трудностей, возникающих при определении фенолов с помощью ИК-спектрофотометрии, можно путем бромиро-вания сместить максимум поглощения, обусловленного колебаниями связи О—Н, с длины волны 2,79 мкм на длину волны 2,84 мкм Этот сдвиг обусловлен образованием внутримолекулярной водородной связи между атомом водорода гидроксильной группы и атомом брома при соседнем атоме углерода. Поэтому для фенолов, в которых замещающий атом брома находится в орго-положении по отношению к гидроксильной группе, величина такого сдвига постоянна. В случае фенолов, уже имеющих заместители в положении 2 и в положении 6, или фенолов, в которых замещение бромом этих положений невозможно из-за пространственных затруднений, таких сдвигов не наблюдается. При 2,84 мкм в некоторой степени поглощают излучение и органические кислоты, поэтому эти кислоты лучше удалять из экстракта в четыреххлористом углероде, используя раствор бикарбоната натрия. [c.41]


    Приведенные в главе V примеры влияния строения двойного слоя на кинетику электродных процессов показывают, что для сопоставления необратимых полярографических волн со строением определенного ряда органических соединений или с природой заместителей в них необходимо принимать во внимание не только pH среды и ее ионную силу, но также природу и концентрацию буферных компонентов и индифферентных электролитов [480, 606]. [c.160]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]

    В случае асимметричных органических кислот Н. Бьерруму удалось определить д при помощи так называемого правила множителя Оствальда. В соответствии с этим правилом каждый раз, когда заместитель вводят в определенное положение [c.45]

    Третье направление — синтез неорганических и элементоорганических полимеров — было стимулировано успехами, достигнутыми в области синтеза кремнийорганических полимеров. Развитию этого направления способствует то, что прочность многих связей больше прочности связи углерод — углерод. Усилия исследователей были направлены на синтез стабильных неорганических /полимеров с линейными цепями, содержащих такие типичные повторяющиеся связи, как кремний — азот, бор — азот и фосфор — азот. Кроме того, подробно изучены элементоорганические поли-> меры, состоящие из неорганических цепей, обрамленных органическими заместителями, как, например, кремнийорганические полимеры. Органические группы могут входить и в основную цепь. Были синтезированы полимеры, в которых атомы кремния в сило-ксаноподобных звеньях заменены на атомы алюминия, титана, олова и бора. Полимеризацией бифункциональных или тетрафунк-циональных соединений с солями соответствующих металлов, а также взаимодействием органических высокополимеров, содержащих определенные функциональные группы, с солями металлов были получены хелаты. [c.37]

    НОЙ хемосорбции производных бензола за счет взаимодействия с поверхностью платины через бензольное кольцо, без его разрушения, явилось установление линейной зависимости между степенью вытеснения адсорбированного кислорода при г—2,2 В и суммой констант заместителей Гаммета (В. И. Наумов, Ю. М. Тюрин). Определенные корреляции между химическим строением и адсорбционньши характеристиками найдены и для других классов органических веществ. Естественно, что даже малая степень деструкции исходных молекул не исключает возможности их окисления в процессе хемосорбцин при высоких анодных потенциалах. [c.121]

    Уже в теории химического строения Бутлерова постулировалось (и было доказано) существование определенной последовательности химической связи атомов, которая была названа им химическим строением. Бутлеров в 1863 г. весьма определенно высказывался в пользу того, что развитие методов исследования в будущем позволит определить пространственное распЬложение атомов в молекуле, т. е. геометрическую структуру или ее строение (не путать с химическим строением ). В 1874 г. Вант-Гоффом была выдвинута стереохимическая гипотеза, согласно которой четыре водородных атома в метане (или их заместители) расположены в вершиназс тетраэдра, в центре которого находится атом углерода. Эта гипотеза позволила объяснить особый вид изомерии, названный оптической изомерией. Гипотеза Вант-Гоффа была подтверждена структурными исследованиями молекул и лежит в основе стереохимической теории (теории пространственного расположения атомов в молекулах) органических соединений [к-9]. [c.172]

    Производные пергидроциклопентанофенантрена — стероиды — помимо биохимического приобрели большое значение и в развитии теоретических основ органической химии и прежде всего основных положений конформационного анализа. Это связано в особенности с тем, что циклическая система циклопентанопергидрофенантрена обладает жесткостью, в ней полностью исключена конформационная подвижность. Поэтому заместитель, имеющий определенную конфигурацию (а- или р-) относительно циклической системы, имеет в то же время определенную конформацию (экваториальную или аксиальную) его положение относительно кольца и относительно соседних заместителей строго фиксировано. Это позволяет на примере стероидных соединений особенно наглядно видеть влияние стереохимических факторов на устойчивость соединений, на направление и скорость реакций, спектральные и другие характеристики. [c.400]

    С помощью значений постоянных и соответствующих корреляционных уравнений, содержащихся в приведеных ниже таблицах, можно вычислить константы равновесия и скоростей реакций органических соединений. Постоянные подразделяются на два типа одни характеризуют определенные классы реакций при данных условиях (реакционные с е р и и), другие — структурные единицы (заместители). Степень соответствия определяемых по таблице величин имеющимся экспериментальным данным характеризуется среднеквадратичным отклонением 5 точек для отдельных заместителей от линии регрессии. Степень приложимости корреляционнного уравнения к соответствующей реакционной серии характеризуется коэффициентом корреляции т. Если г 0,99, то имеется отличная корреляция, при 0,99 > / 0,95 — хорошая, при 0,95 > г > 0,90 — удовлетворительная, а при г -< 0,90 — неудовлетворительная. [c.392]

    Влияние заместителей на определение порядка нумерации зависит от старшинства разделов в порядке II—III—IV—V—VI и от старшинства rpvnn в разделах. На стр. 645 приведена схема построения названия сложного органического соединения а]1,иклического ряда. [c.644]

    Полностью переработаны разделы по токсичности наиболее употребительных химических реактивов, а также разделы по газожидкостной и гопкослонной. хроматографии н ЯМР-спектроскопии. В некоторых. методиках имеются указания на применение современных методов прн разделении и идентификации продуктов реакций. Б расширенной но сравнению с предыдущими изданнямп аналитической части оговорены границы применимости реакций идентификации и имеются методики но определению грамм-эквивален-тов важнейших классов органических соединений.. Значительно расширен и переработан разд. В, где рассматриваются количественные данные о илняиии заместителей на скорость органических реакции. [c.9]

    Как отмечалось в разд. 7,3 кн. 1, в определенных условиях галоге-пирование протекает быстрее, чем енолизация. Б этих случаях место вступления заместителя з несимметричный кетон определяется относительной скоростью образования изомерных енолов. Из. несимметричных кетонов обычно образуются смеси. Присутствие галогенов в качестве заместителей уменьшает скорость енолизации и замедляет скорость введения второго галогена к атому углерода. Поэтому в кислой среде обычно легко проходит моногалогеннрование. Галогенирование, катализуемое основаниями, дает преимущественно полигалогенированные продукты. Эффективным методом моног логенирования кетонов является использование хлорида [56] и бромида меди(П) [57] в органических растворителях, например в хлороформе  [c.93]

    Одной из быстро прогрессирующих методологий органического синтеза являются реакции нуклеофильного ароматического замещения водорода (Sn )- Огромный потенциал реакций определяется фундаментальным свойством С-Н связей в л-дефицитных аренах и гетероаренах, а именно их способностью подвергаться реакциям замещения водорода под действием анионоидных реагентов. Нуклеофильная атака на незамещенный углеродный атом аренов или гетаренов позволяет избежать предварительного введения в ядро таких уходящих групп, как Hal, -OR, -SO2R, -NO2 и т. п., что открывает новые возможности для прямого введения заместителей и дает определенные технологические преимущества по сравнению с классическими реакциями [c.99]

    Экспериментальные данные незначительно отличаются отряда, полученного на основании расчета МЭСП Имеющиеся расхождения могут быть связаны с проявлением стерических эффектов в случае орто-заме-щенных ДФА Возрастание числа конформеров при введении заместителей в молекулу ДФА и наличие свободного вращения ароматических колец вокруг связей -N в молекулах реагентов ДФА ряда могут привести к некоторому изменению распределения МЭСП по сравнению с рассчитанным дпя одной конформации Тем не менее, проведенный расчет позволяет четко выявить тенденции изменения МЭСП при введении в ароматические кольца молекулы ДФА замещающих групп различной природы и констатировать решающее влияние эффекта поля на реакционную способность органических реагентов дифениламинового ряда Расчет распределения МЭСП оказывается полезным при полуколичественном объяснении экспериментальных данных, характеризующих процесс окисления изучаемых аминов и имеет большую прогностическую ценность в определении аналитических свойств этой группы фотометрических реагентов [c.213]

    Хлорофиллы. Зеленые пигменты растений - хлорофиллы имеют определенное родство с гемом (гемином) - красньпл пигментом крови. И гем и хлорофиллы откосятся к порфиринам. Порфирины - важнейшие органические компоненты биологических систем, имеющие в качестве основной структурной единицы гетероцикл пиррола (схема 14.15). Порфирины содержат в молекуле макроцикл порфина - циклическую тетрапиррольную структуру с метиленовыми мостиками. Порфирины различаются боковыми заместителями и способны образовывать комплексы (хелатные соединения) с металлами. Хлорофилл - зто М -порфириновый комплекс, а гем - Ре-порфириновый. Биологическая активность порфиринов зависит как от металла, образующего комплекс, так и от набора и расположения заместителей - метильных, этильных, виниль-иых групп и, главным образом, остатков пропионовой кислоты. [c.531]

    Уравнения линейной зависимости свободных энергий и потенциалов окисления, определенных при анодной вольтамперометрии, детально описаны Страдынем и Гасановым [27] на примере различных ароматических соединений (фенолов, иминов, шиффовых оснований, азотсодержащих гетероциклов, серосодержащих соединений, металлоценов) параметры уравнений для многочисленных представителей указанных групп веществ (114 реакционных серий) сведены в таблицы. Для многих из рассмотренных реакционных серий веществ авторам удалось по полярографическим данным оценить вклад эффекта прямого полярного сопряжения в суммарный эффект заместителей. При этом было обнаружено, что вклад резонансных эффектов будет различным в зависимости от типа серии веществ и от условий среды. Детальный анализ полученных в этой работе результатов показал, что применение уравнений линейной связанности (ЛСЭ) в анодной вольтамперометрии позволяет количественно охарактеризовать реакционную способность органических молекул в электрохимических реакциях, что имеет определенное значение, в первую очередь, для предсказания условий проведения [c.41]

    Наконец третья, менее значительная, группа методов изменяет главным образом углеродный скелет органического соединения. Нужно указать, что если в первой и второй группах можно выделить такие приемы, которые вполне подходят под определение задач методов, как они выше оцределены, то все же имеются и такие, которые одновременно с своей целью осуществляют и цель другой группы методов, например одновременно с превращением имеющегося заместителя вводится новый. [c.23]

    Большинство классических методов синтеза гетероциклов основано иа реакциях замыкания цикла. Однако в последние годы все большее значение при синтезе гетероциклических соединений приобретают реакции циклоприсоединения. Эти реакции позволяют конструировать гетероциклические системы с четко определенным положением заместителей и во многих случаях обеспечивают высокий сте химический контроль. Прогресс в использовании реакций ци-клоприсоединения в синтетической органической химии был стимулирован созданием новой теории механизмов этих реакций. Правило сохранения орбитальной симметрии Вудварда — Гофмана создало основу для понимания ме)санизмов различных типов реакций циклоприсоединения, а применение теории граничных орбиталей позволило объяснить влияние заместителей на скорость и селективность таких процессов [74]. [c.109]

    Полярографический метод может дать также некоторое представление о строении молекул органических соединений, характере функциональных групп и заместителей и их взаимном расположении. Известно, что между природой заместителей и сдвигом потенциала полуволны органического соединения существует определенная связь. Так, введение в ацетон фенильного радикала облегчает восстановление в большей степени, чем замещение водорода метильным радикалом. Карбоксильная группа, введенная в бензольное ядро нитробензола, смещает потенциал восстановления нитрогруппы в положительную сторону больше, чем гидроксильная группа или атомы хлора. При полярографировании динитробензола легче всего восстанавливается п-динитро-бензол, а труднее всего — -динитробензол. Восстановление карбонильной группы в альдегидах облегчается наличием в молекуле сопряженных двойных связей акролеин СНг = СИ—СНО восстанавливается легче пропионового альдегида СН3СН2СНО и т. п. [c.225]


Смотреть страницы где упоминается термин Органические заместители, определение: [c.157]    [c.263]    [c.20]    [c.417]    [c.246]    [c.292]    [c.107]    [c.122]    [c.102]    [c.455]    [c.455]    [c.12]    [c.417]   
Силивоны (1950) -- [ c.225 ]




ПОИСК







© 2024 chem21.info Реклама на сайте