Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активация окислительно-восстановительная

    Природой связи аддендов с центральным атомом следует объяснить, видимо, особенности протекания различных реакций. Например, скорость и энергия активации окислительно-восстановительных реакций могут резко изменяться в зависимости от прочности этой связи, которая колеблется в очень широких пределах (влияние оказывают и число, и природа координированных групп вокруг иона-окислителя или иона-восстановителя, а также состав получаемых продуктов реакции) [29]. Эта же причина, по-видимому, не позволяет четко разграничить двойные соли от комплексных, более резко выражены их свойства лишь у край- [c.204]


    Энергия активации окислительно-восстановительных реакций, сопровождающихся образованием свободных радикалов значительно меньше, чем для реакций термического распада перекисей. [c.117]

    Для понимания механизма периодичности изменений магнитной восприимчивости клеток необходимо более детально остановиться на особенностях активации окислительно-восстановительных реакций парамагнитными свободными радикалами. [c.78]

    Итогом обеих реакций является нарушение регулярности построения полимерной цепи и появление разветвленных макромолекул. Так как энергия активации вторичных реакций значительно выше энергии активации реакции роста, доля вторичных реакций падает с понижением температуры полимеризации. Применение окислительно-восстановительных систем для инициирования радикальной полимеризации бутадиена позволило снизить температуру полимеризации до 0°С и существенно уменьшить разветвленность образующегося полимера [2, с. 1—86]. [c.178]

    Для активации процесса к концу полимеризации добавляют небольшое количество водного раствора аммиака, участвующего в качестве компонента окислительно-восстановительной системы. [c.371]

    Катализатор снижает энергию активации со 198 до 134 кДж/моль. Все гомогенные каталитические реакции в растворах с известной степенью условности можно разделить на три группы 1) кислотноосновной катализ, 2) окислительно-восстановительный катализ (катализ комплексными соединениями или координационный катализ), 3) ферментативный катализ. [c.623]

    Из рассмотренных примеров видно, что общим в кинетике окисления является тормозящее влияние продуктов окисления, адсорбирующихся на поверхности сильнее, чем исходные углеводороды. Для кислорода не наблюдается такого влияния, что подтверждает механизм хемосорбции углеводорода не на активных центрах, а на центрах, уже сорбировавших кислород. В то же время порядок реакции по кислороду и углеводороду может быть разным и зависящим от соотношения реагентов, окислительно-восстановительных свойств среды, а, значит, и от степени окисленности металла или оксида в приповерхностном слое. Энергия активации при гетерогенном окислении олефинов составляет 63—84 кДж/моль (15— 20 ккал/моль), а для ароматических соединений около 105 кДж/моль ( 25 ккал/моль). [c.415]

    В-третьих, для быстрого протекания каталитических реакций нужно, чтобы катализатор уменьшал энергию активации реакции. Это особенно важно для гомолитических (окислительно-восстановительных) реакций, в которых роль катализатора заключается главным образом в снижении энергии активации при образовании радикалов с разрывом электронной пары. Такими катализаторами будут вещества, имеющие свободные валентности и, следовательно, являющиеся проводниками тока (металлы, полупроводники). Небольшие добавки, повышающие радикальный характер катализатора, будут облегчать переход электронов с катализатора на реагирующее вещество и понижать энергию активации при образовании радикалов на поверхности катализатора. Теоретические основы для выбора втих добавок дает электронная теория. [c.462]


    Для увеличения скорости распада инициаторов, например пероксидов, в реакционную смесь вводят "промоторы" - восстановители. Окислительно-восстановительные инициирующие системы щироко используются для проведения синтеза различных карбоцепных полимеров. Инициирование процесса полимеризации путем применения окислительно-восстановительных систем характеризуется небольшим температурным коэффициентом (сравнительно малой кажущейся энергией активации). [c.218]

    Наличие в активном центре нуклеофильных и электрофиль-ных групп или целого набора окислительно-восстановительных центров увеличивает вероятность синхронных кислотно-основных и окислительно-восстановительных стадии, характеризующихся пониженной энергией активации. [c.188]

    Ферменты катализируют самые разнообразные реакции гидролиз и дегидрирование, конденсацию, изомеризацию, окислительно-восстановительные реакции и многие другие процессы. Они обладают рядом особых свойств, которые отличают их от органических катализаторов гомогенного типа и других известных катализаторов. Для них характерны исключительно высокая каталитическая активность и низкие энергии активации. [c.186]

    В отличие от первых двух требований, относящихся к термодинамике (увеличение степени компенсации в каталитической реакции, малая прочность промежуточных соединений), следующее важное требование касается скорости взаимодействия реагентов с катализатором это взаимодействие должно происходить быстро, т. е. с малой энергией активации (такой случай изображен на рис. 18). Это особенно важно для гомолитических реакций, в которых разрыв электронной пары требует высокой энергии активации. Поэтому твердые катализаторы окислительно-восстановительных реакций (окисления, гидрогенизации, дегидрирования и т. п.) должны обладать радикальным характером, т. е. иметь неспаренные электроны. [c.100]

    Эффективными инициаторами полимеризации являются разнообразные окислительно-восстановительные системы, особенность которых—малая энергия активации образования радикалов, составляющая около 41,8 кДж/моль по сравнению с 125,5— 146,5 кДж/моль при термическом распаде перекисей. [c.10]

    При полимеризации часто используют окислительно-восстанови-тельное инициирование. В этом случае в систему вместе с инициатором вводят восстановитель — промотор. В результате окислительно-восстановительной реакции образуются свободные радикалы, инициирующие полимеризацию. Особенностью окислительно-восстановительного инициирования является очень низкая энергия активации 50,1 — 83,6 кДж/моль (12—20 ккал/моль) вместо 146 кДж/моль (35 ккал/моль) при термическом распаде инициатора. Это позволяет проводить полимеризацию при более низких температурах, при которых уменьшается возможность протекания побочных процессов, приводящих к изменению кинетики реакции и свойств получаемого полимера. [c.70]

    Энергии активации реакций на всех сульфидах близки между собой. На сульфидах кобальта и никеля скорость реакции на порядок выше, чем на сульфиде железа. Авторы предполагают, что механизм гидрирования на всех трех сульфидах идентичен и носит окислительно-восстановительный характер. [c.307]

    Наличие в активном центре нуклеофильных и электрофильных групп или целого набора окислительно-восстановительных центров увеличивает вероятность синхронных кислотно-основных и многоэлектронных окислительно-восстановительных стадий, характеризующихся пониженной энергией активации. При этом создаются также благоприятные возможности для реализации многостадийных процессов с оптимальным на каждой стадии участием соответствующих групп катализатора. [c.551]

    Инициирование реакции полимеризации ВА окислительно-восстановительными системами позволяет значительно снизить энергию активации реакции и осуществлять процесс при сравнительно низки температура . Низкотемпературная полимеризация ВА способствует получению полимера с более регулярной структурой и высокой ММ. Ниже приведены значения энергии активации (в кДж/моль) полимеризации ВА в присутствии различных инициаторов [И, 12]  [c.10]

    Только фотополимеризация и полимеризация под действием радиационного облучения имеют более низкие энергии активации по сравнению с полимеризацией в присутствии окислительно-восстановительных систем. [c.10]

    Алюмоплатиновый катализатор представляет собой окись алюминия, на которую нанесено не более 0,6% платины. Этот катализатор является бифункциональным. С точки зрения теории катализа в бифункциональных катализаторах существуют активные центры веществ, содержащие как неспаренные, так и спаренные электроны. Первые способствуют активации окислительно-восстановительных реакций. В данном случае это платина, являющаяся (так же, как и другие металлы VIII группы) типичным гидриру-ющим-дегидрирующим катализатором. Поэтому на алюмоплатиновом катализаторе развиваются реакции дегидрирования шестичленных нафтенов и дегидроциклизации алканов. Окись алюминия— вещество со спаренными электронами имеет кислотный характер. Поэтому на алюмоплатиновом катализаторе активируются реакции изомеризации, протекающие по карбоний-ионному механизму. Для усиления этой функции катализатор промотируется хлором или фтором. Б качестве промоторов, увеличивающих [c.243]


    Было найдено, что распад Н2О2 на свободные радикалы значительно ускоряется в присутствии ионов двухвалентного железа Fe Ион Fe является восстановителем, а перекись водорода — окислителем, поэтому такие системы были названы окислительно-восстановительными (редокс-снстемы). Кроме солей двухвалентного железа, эффективными активаторами перекиси водорода оказались соли хрома, ртути, меди, титана и марганца. Энергия активации окислительно-восстановительного инициирования полимеризации на 10—20 ккал/моль ниже, чем при термическом распаде инициатора. [c.131]

    Одним из важных и в то же время исключительно гибких способов получения свободных радикалов (главным образом в водных системах) и инициирования радикальноцеппых процессов является применение окислительно-восстановительных систем, частично или полностью состоящих из неорганических соединений. Первым примером служит применение реактива Фентона (ионы закиси железа и перекись водорода) для окисления множества органических субстратов, описанного Фентоном еще в 1894 г. [86]. Известно большое число иодобных систем, а также радикальноцепных процессов, в которых участвуют только неорганические реагенты. К таким процессам принадлежит катализируемое ионами металлов автоокисление сульфита, объяснение которому было дано в начале тридцатых годов Габером и Вильштетте-ром [87] и Бекстремом [88]. Однако наиболее значительным достижением в этой области явилось инициирование винильной полимеризации — метод, известный под различными названиями восстановительная активация, окислительно-восстановительный катализ, окислительно-восстановительная полимеризация. При этом термин окислительно-восстановительные системы распространяют на все системы такого рода, дающие свободные радикалы или инициирующие радикальноцепные процессы по одноэлектронному окислительно-восстановительному механизму. [c.447]

    Полупроеодл-аки,. Соединения, подобные 2пО, 7пЗ и РЬ8, не являются хорошими проводниками, но они имеют электроны, которые могут быть термически возбуждены с очень низкой энергией активации (10—20 ккал), что обусловливает появление электропроводности. Поверхности и углы таких твердых тел могут служить центрами окислительно-восстановительных и, возмоншо, свободно-радикальных реакций. [c.532]

    При взаимодействии окислителя (инициатора) с восстановителем (активатором) образуется высокая концентрация промежуточных лабильных свободных радикалов, позволяюших проводить полимеризацию при низкой температуре с высокой скоростью. Как правило, наибольшая скорость полимеризации достигается при эквимолекулярном соотношении окислителя и восстановителя. Энергия активации реакции полимеризации в присутствии восстановителя понижается со 126 до 42 кДж/моль. Способность снижать энергию активации полимеризации — одно из основных и характерных особенностей окислительно-восстановительных систем, инициирующих эти процессы. [c.136]

    Райт и Уэллер [6] изучали влияние добавок на изменение среды. Как известно, образование клешневидных колец изменяет окислительно-восстановительные свойства ионов н поэтому, но-видимому, снособно оказать влияние иа активацию водорода. Присутствие этилендиамина и этилепдиамиптетрауксусной кислоты вызывает уменьшение как скорости, так и степени восстановления хинона и моногидрата ацетата меди(И) в хинолиновом растворс при 100°. Образование металлической меди авторы относят за счет присутствия органического вещества. [c.187]

    Применение для инициирования реакций свободнорадикальной полимеризации окислительно-восстановительных систем широко распространено в промышленности производства полимеров. Прежде всего это связано с существенным снижением энергии активации распада инициаторов на свободные радикалы и уменьшением таким образом энергетических затрат в производственных условиях. Так, в присутствии окислительно-восстановительных систем энергия активации стадии инициирования полимеризации снижается от 146 до 50—84 кДж/моль. [c.22]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Применение электрохимических методов в промышленном органическом синтезе определяется возможностью проведения реакций восстановления или окисления ряда органических соединений без применения специальных окислителей или восстановителей в широком интервале потенциалов. Электрохимические методы дают возможность точной регулировки окислительно-восстановительного потенцима системы поляризацией внешним источником тока с тем, чтобы обеспечить протекание реакции в нужном направлении. Развитая поверхность металлического электрода в ряде случаев является катализатором процесса окислительно-восстановительного синтеза, снижая энергию активации процесса и ускоряя его. Регулировка скорости процесса достигается за счет изменения плотности тока на электроде. [c.443]

    При взаимодействии между окислителем и восстановителем происходит интенсивное образование радикалов. Общий смысл окислительно-восстановительного активирования полимеризационных процессов заключается в том, что энергия, выделяющаяся при взаимодействии окислителя и восстановителя, используется для активации мономеров. Окислытельно-восстановительные процессы протекают через промежуточные стадии свободных радикалов, являющихся возбудителями полимеризации. [c.645]

    Название кофермент (коэнзим) иногда употребляют для протеи-ноидного фермента, необходимого для активации другого фермента, но часто коферментом называют простетическую группу, без которой белок неактивен. Донорный фермент требует акцепторного фермента со специфическим окислительно-восстановительным потенциалом и не может функционировать с другим акцептором даже в тех случаях, когда простетические группы акцепто])ов очень близки по строению. Специфическая единица в простетической группе в каждом акцепторном ферменте способна принять два атома водорода. В ряде случаев этой единицей является никотинамидная группа (никотинамид — незаменимый компонент пищи многих животных). [c.718]

    Окислительно-восстановительные реакции протекают со значи тел ьно меньшей энергией активации по сравнению с термическиь распадом перекисных соединений на свободные радикал ( 10 ккал моль вместо 30—35 ккал моль). Это позволяет прОво дить полимеризацию при более низких температурах. [c.40]

    Продукты первой стадии метанового брожения наряду с повышением кислотности вызывают увеличение окислительно-восстано-вительного потенциала среды, тогда как нормальному протеканию второй стадии брожения благоприятствуют нейтральная реакция и низкий окислительно-восстановительный потенциал поэтому метановое брожение происходит чрезвычайно медленно. Приток барды в метантенки регулируют таким образом, чтобы образующиеся в первой стадии брожения органические кислоты потреблялись метанобразующими бактериями во второй стадии брожения с образованием главным образом метана и витамина В12, иначе процесс брожения завершается на первой стадии и происходит закисание культуры. Для активации жизнедеятельности бактерий в метантенки добавляют суспензию кормовых дрожжей. [c.390]

    Примеление для инициирования радикальной полимеризации окислительно-восстановительных систем широко распространено в промышленности. Это связано с существенным снижением энергии активации распяла инициаторов иа свободные ра.цика-лы (50—84 кДж/моль вместо 125—170 кДж/моль при термическом инициировании), что позволяет проводить полимеризацию Т1ри низких температурах и снижает энергетические затраты. Рассмотрим некоторые примеры действия окислительно-восстановительных систем при инициировании радикальной полимеризации. [c.114]

    Недостаток диаграмм Фроста (как и всякой информации, получаемой на основе использования окислительно-восстановительных потенциалов) заключается в том, что они способны лишь отделить принципиально возможные реакции от невозможных. С их помощью нельзя установить, какая из возможных реакций окажется предпочтительной (т.е. будет протекать в более благоприятных условиях), как нельзя и указать — будет ли данная реакция протекать вообще. Такую информацию дает энергия активации реакции (см. гл. 13), поскольку именно эта характеристика реакции определяет скорость ее протекания. Проблема установления связи между вольт-эквива-лентом окислительно-восстановительной реакции и ее движущей силой будет более подробно обсуждаться в гл. 17. В приведенном выше примере твердый ЫН4НОз при повышении температуры дает N20 [c.295]

    Для активации инертного окислителя - молекулярного кислорода - используют комплексы Си и Ре . Включение Оз в координационную сферу этих металлов приводит к реакции внутрисферного переноса одного или двух электронов и серии последующих окислительно-восстановительных процессов. Рассмотрим некоторые из этих реакций с участием 2,2 -дипиридильного комплекса ЬзСи , катализирующего окисление различных субстратов типа АНз (малоновая и аскорбиновая кислоты)  [c.547]


Смотреть страницы где упоминается термин Активация окислительно-восстановительная: [c.628]    [c.186]    [c.187]    [c.216]    [c.628]    [c.253]    [c.32]    [c.248]    [c.895]    [c.30]   
Основы химии полимеров (1974) -- [ c.175 , c.176 ]




ПОИСК







© 2025 chem21.info Реклама на сайте