Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Шероховатость поверхностей контакта

    Основными факторами, влияющими на силу сцепления цементного камня с обсадными трубами, являются шероховатость поверхности труб и чистота, прочность и деформационная способность цементного камня и величина усадки. X. Беккер и Г. Петерсон [534] установили, что чем выше шероховатость труб и прочность цементного камня, тем больше сила сцепления между ними. Высокая усадка и низкая деформация цементного камня заметно снижают адгезию. С ростом забойной температуры до 110° С прочность контакта [c.226]


    Характер обработки поверхности металла при прочих равных условиях также влияет на образование питтинга. На шероховатых поверхностях нормальная нагрузка передается малой фактической площадью контакта, что приводит к повышению удельных давлений и снижению времени до образования питтинга. [c.253]

    Влияние шероховатостей поверхности на коэффициент трения весьма сложно. Ранее отмечалось, что при трении металлов полировка поверхностей контртел приводит к увеличению площади фактического контакта, вызывающему возрастание коэффициента трения известно также, что увеличение шероховатости поверхностей сопровождается ростом кинематического коэффициента трения вследствие интенсификации процессов пропахивания, растрескивания и задира . При сухом трении полимера по металлу увеличение шероховатости поверхности также приводит к росту коэффициента трения [11, 13, 15]. [c.87]

    Шероховатость поверхностей контакта [c.93]

    Смазочные материалы на поверхности электрического контакта должны длительное время обеспечивать нормальную работу контактного устройства. Наносить толстые слои смазки на контакты нежелательно, так как избыток смазки выдавливается из зоны контакта. Чрезмерно малое количество смазки может быстро срабатываться, поэтому целесообразно небольшое увеличение шероховатости поверхности контакта, способствующее удержанию нужного количества смазки. Тонкий слой смазки удобно наносить из раствора в летучих жидкостях (петролейный эфир). [c.135]

    Второй этап — переход от граничного трения к металлическому контакту, который вначале возникает на единичных неровностях. Здесь определяющую роль играют свойства граничных пленок и шероховатость поверхностей контакта. [c.197]

    Так как размеры контактной поверхности существенно влияют на адгезию покрытий, обычно возникает заинтересованность в ее увеличении. Тем не менее даже на непористых подложках с малой степенью шероховатости поверхности контакт никогда не бывает абсолютно полным. [c.29]

    Условие (101) не обязательно выполняется на границах раздела реальных твердых тел. Неполный контакт из-за шероховатости поверхности, оксидных пленок или сорбционных слоев может приводить в результате к возникновению дополнительных контактных сопротивлений (см. 2.4.6). [c.226]


    А. Введение. Когда две поверхности находятся в контакте (рис. 1), они остаются разделенными из-за шероховатостей поверхности. Газ или жидкость также могут заполнять пространство между поверхностями, и если текущая в промежутке жидкость имеет более низкую теплопроводность, чем материал поверхности, возникает контактное сопротивление. [c.231]

    При соприкосновении двух поверхностей контакт происходит не по всей площади, а лишь на относительно небольшом числе выступов шероховатостей. В результате скольжения поверхностей друг относительно друга неровности одной поверхности стирают неровности противоположной и образуется гладкий след. Если эта поверхность металлическая, то здесь сразу же адсорбируется газ или происходит ее окисление. Последующие перемещения шероховатостей стирают пленку оксида они могут и механически активировать реакцию адсорбции кислорода на металле и образования оксида, который, в свою очередь, также стирается (рис. 7.20). Это химическая составляющая разрушения при фреттинге. Кроме того, шероховатости вызывают определенный износ, удаляя частички металла. Это механическая составляющая. Оторвавшиеся частицы металла превращаются в оксид, и поверхность металла через некоторое время начинает истираться о движущиеся частицы в большей степени, чем о противоположную поверхность (в результате низкое вначале электрическое сопротивление между поверхностями становится высоким). [c.165]

    Для прочного слипания двух твердых тел необходимо обеспечить тесный контакт между их поверхностями, поскольку ван-дер-вааль-совы силы оказываются пренебрежимо малыми, если расстояние между молекулами превышает несколько ангстрем. Боуден и Тейлор [5] установили, что из-за существования микрошероховатостей на поверхности контакта (рис. 4.2) фактическая площадь контакта составляет очень небольшую часть номинальной площади контакта. Для адгезии твердых тел большое значение имеет не только величина фактической площади контакта, но также и отсутствие на поверхности контакта различных органических загрязнений или оксидов, наличие которых существенно уменьшает прочность адгезионного соединения. Существенное уменьшение площади фактического контакта может произойти из-за эластического восстановления пиков поверхностных шероховатостей, развивающегося после снятия нормальной нагрузки, обеспечивающей прижатие друг к другу контактирующих твердых тел. Чтобы предотвратить это уменьшение площади фактического контакта, необходимо произвести отжиг контактирующих поверхностей под действием сжимающей нагрузки. Часто для увеличения поверхности фактического контакта между двумя твердыми телами вводят слой жидкости, которая, затвердевая, обеспечивает необходимую для эксплуатации прочность адгезионного соединения. [c.82]

    Из (13.14) видно, что сила трения резины зависит также и от 5ф. Ввиду того что реальная поверхность эластомеров всегда шероховатая и волнистая, 5ф всегда имеет дискретный характер, т. е. контакт происходит по пятнам касания 5ф составляет лишь малую долю (порядка 0,001 и менее) от номинальной (геометрической) поверхности контакта. Под действием сжимающей силы формирование площади контакта происходит таким образом, что прирост 5ф обусловлен в основном увеличением числа пятен касания без заметного увеличения их размеров. [c.372]

    При изучении внешнего трения твердых тел важно правильно оценивать площадь фактического контакта 5ф, зависящую от механических свойств фрикционной пары, шероховатости поверхностей и силы нормального давления. Первые методы расчета были основаны на моделировании макронеоднородностей поверхности каким-либо одним видом геометрической фигуры (шар, конус, эллипсоид и др.) и на предположении, что деформация совокупности локальных контактов при выбранной модели является либо чисто упругой, либо пластической, либо упругопластической [13.3]. [c.359]

    В 1940 г. Журавлевым был предложен метод расчета 5ф, в основу которого он положил идею моделирования шероховатости поверхности набором сфер одного и того же радиуса. Так как число контактирующих выступов увеличивается по мере углубления в шероховатую поверхность по линейному закону, при расчете площади фактического контакта предварительно определялась вероятность встречи двух микровыступов. [c.359]

    Используется также метод оценки степени контактирования тел, основанный на наблюдении фазового контраста. Сущность его заключается в том, что при контактировании шероховатой поверхности с полированной пластиной, покрытой тончайшей серебряной пленкой, в местах контакта пленка и стекло незначительно деформируются. Пленку через стекло рассматривают в микроскоп и, применяя метод фазового контраста, фиксируют пятна и их размер. Недостатком этого метода является невозможность его применения к движущимся сопряженным поверхностям. [c.361]

    Для обеспечения иммерсионного варианта акустического контакта ОК целиком погружают в иммерсионную ванну. Иногда в зоне контроля создают локальную иммерсионную ванну либо применяют струйный контакт (через струю жидкости). Иммерсионный способ применяют при контроле объектов с сильно шероховатой поверхностью, но без макронеровностей. [c.58]


    Уравнения (11.23) и (11.25) применимы для гладких поверхностей. На шероховатой поверхности имеются микротрещины и микровыступы, площадь которых не учитывается. Различия в площади фактического контакта гладкой и шероховатой поверхностей являются основной причиной изменения показателей, характеризующих смачивание. [c.49]

    Если посмотреть под микроскопом на очищенную скребками поверхность трубопровода в продольном его сечении, то видны шероховатости, которые имеют коническую форму и распределены с равной вероятностью по поверхности. Шероховатости увеличивают поверхность сцепления с изоляцией и тем самым при прочих равных условиях упрочняют сцепление изоляционного слоя с металлом. При гладкой поверхности уменьшается площадь контакта покрытия с металлом и тем самым снижается сила сцепления, а при чрезмерно большой шероховатости поверхности (при пленочных покрытиях) могут обнажаться выступы под защитным покрытием. Чистота поверхности и значения шероховатости должны быть выдержаны в соответствии с существующими требованиями при очистке для наложения полимерных лент. Поверхность трубопровода после очистки для лучшей адгезии битумно- [c.52]

    С. Я. Герш и А. М. Архаров [41] на основании проведенных ими экспериментов установили, что поверхность контакта между фазами не равна поверхности пластин, составляющих дно ходов ректификатора. Это происходит вследствие волнообразования на поверхности дна и связано с шероховатостью материала. Поэтому они вводят фактор /, учитывающий влияние шероховатости материала. Они выяснили также, что на величину коэффициента массопередачи оказывают влияние величины флегмового числа, эквивалентный диаметр канала, средний радиус кривизны канала, число единиц переноса массы. Последний фактор учитывает характер кривой равновесия системы, подвергаемой ректификации. [c.290]

    Свинцовый аккумулятор имеет один электрод из свинца и другой электрод из двуокиси свинца. Оба электрода погружены в серную кислоту. Их пластины имеют шероховатую поверхность, чтобы увеличить площадь контакта, они закреплены близко друг от друга с помощьк> жестких рамок. В аккумуляторе протекают следующие реакции  [c.202]

    Второй закон устанавливает, что сила трения не зависит от площади поверхности контакта двух тел. В настоящее время хорошо известно, что реальная поверхность контакта двух тел значительно меньше кажущейся и нагрузка распределяется на небольшом числе шероховатостей на поверхности тела. При первоначальном контакте двух тел эти шероховатости пластически деформируются до уравновешивания приложенной нагрузки, так что величину действительной поверхности контакта можно выразить следующим образом  [c.123]

    Если же реакции протекают с участием поверхности, как это бывает в гетерогенных системах, то возможно большая площадь контакта поверхностей раздела фаз есть необходимое условие для обеспечения высокой скорости гетерогенной реакции. В этих случаях стараются получить как можно более неровные, шероховатые поверхности. [c.109]

    Некоторые вопросы теории адгезии. Контакт между веществами в твердом состоянии легче осуществить, если присутствует хорошо смачивающая жидкость. Жидкость создает условия подвижности частиц, что способствует образованию контактов и дает возможность осуществить их на большей площади. Обычно площадь контакта между двумя твердыми поверхностями мала, так как поверхности могут соприкасаться лишь на отдельных участках ввиду их шероховатости (даже в случае полированных поверхностей). Отношение истинной поверхности к кажущейся больше трех. Поэтому истинная поверхность контактов невелика. [c.38]

    Погрешности акустического контакта, связанные с изменением времени прохождения импульса через слой контактной жидкости. Если это время включено в измеряемый интервал времени t, то измеряемая толщина завышается на величину Д/ьз= = 2Д/гжСи/сн(, где Сщ и с — скорости звука в ОК (изделии) и жидкости, а Аж — толщина слоя жидкости. Соответствующую погрешность можно было бы учесть как систематическую, однако толщина слоя изменяется из-за разной шероховатости поверхности ОК и степени прижатия преобразователя. В результате погрешность становится случайной. [c.237]

    Возможна также диагностика состояния поверхности, основанная на повышенных нелинейностях контакта двух шероховатых твердых тел. В экспериментах регистрировалась вторая гармоника волны, отраженной от зоны контакта. При отражении от свободной шероховатой поверхности амплитуда гармоники была пренебрежимо малой. Если же к поверхности прилагалась хорошо отполированная пластинка и прижималась давлением Рст, вторая гармоника уверенно регистрировалась. Наличие прижимающего усилия вызывало появление и рост сигнала на частоте 2со. Зависимость амплитуды этого сигнала от давления Р(Рст) имела характерный максимум. При больших Р , формировался хороший акустический контакт [c.127]

    При скорости движения преобразователя 150. .. 750 мм/с, шероховатости поверхности ОК Rz 20. .. 80 мкм стабильность акустического контакта с помощью магнитной жидкости приблизительно такая же, как при иммерсионном способе контакта, и в 3 - 4 раза повышает стабильность контакта по сравнению с ручным контролем [184]. [c.242]

    Таким образом, можно констатировать, что при нанесении на стальную поверхность органического защитного покрытия достигается двойной эффект. Во-первых, повышается гладкость поверхности контакта с кристалликами парафина. Известно /30/, что технологическая шероховатость новых стальньк труб, поступающих на промыслы, определяется величиной порядка 190-500 мкм, что соответствует классу чистоты не выше II. Как графически показано в указанной работе, при увеличении шероховатости до глубин впадин, соизмеримых с размерами частиц дисперсной фазы, вероятность чисто механического удержания частиц на поверхности подложки резко возрастает. Учитывая, что около 70 % частиц дисперсной фазы в нефтяных суспензиях имеют размеры порядка 1 мкм /33/, можно ожидать высокую интенсивг ость запарафинирования стальных труб даже за счет чисто механического удержания частиц. Нанесение полимерного защитного покрытия резко снижает шероховатость поверхности контакта. Вновь образуемая поверхность имеет класс чистоты до 13, что практически исключает возможность чисто механического удерживания частиц. Кроме того, как было показано ранее, повышение гладкости поверхности приближает истинную поверхность контакта к номинальной поверхности, что, безусловно, снижает интенсивность образования отложений. [c.142]

    Следует отметить, что экспериментально определить истинное значение краевого угла смачивания достаточно трудно, а иногда и невозможно. Это связано с тем, что смачивание поверхности сильно зависит даже от следов загрязнений. Смачивание резко изменяется уже при образовании моно-молекулярного слоя, между тем установлено, что толщина граничного слоя воды, например на стекле, достигает 100А и с трудом удаляется даже при нагревании в вакууме при 400-500°С /56/. Больщинство веществ, в том числе металлы, хорошо окисляются даже при контакте с воздухом, и образующиеся окислы резко меняют смачиваемость. На смачивание влияет также шероховатость поверхности, усиливая соответствующую фильность последней. На краевой угол смачивания влияют условия образования поверхности. Так, краевой угол смачивания водой поверхности стеариновой кислоты составляет при охлаждении расплава кислоты в воздухе 85 , тогда как при охлаждении на стекле лишь 47°. На основании всех этих особенностей даже утверждается /43/, что прогноз парафиностойкости поверхности с позиций обычных методов оценки фильности невозможен. [c.101]

    Вывод, указывающий как бы на независимость силы прилипания при высокой гладкости поверхности от природы материала кажется неожиданным, но он вполне объясним. Конечно, с увеличеш1ем неровности поверхности истинная сила прилипания, т.е. зависящая от природы материала специфическая адгезия на единицу поверхности, не меняется, а происходит лишь увеличение истинной поверхности контакта, приходящейся на единицу номинальной поверхности подложки. В результате с ростом шероховатости поверхности наблюдаемая работа адгезии, представляющая собой произведение истинной прилипаемости и истинной поверхности контакта, увеличивается, что сопровождается повышением интенсивности запарафинирования номинальной поверхности. [c.102]

    При уровне шероховатости, допускающем первый предельный режим течения, все поверхности гребней шероховатости целиком находятся в диффузионном подслое и мо1 ут участвовать в процессе парафиноотложения. Поэтому в этих пределах увеличение шероховатости приводит к увеличению истинной поверхности контакта на едшшцу номинальной поверхности и соответственно к пропорциональному росту интенсивности парафиноотложения. [c.140]

    При высокой шероховатости истинная поверхность контакта будет существенно превышать номинальную и определяющим фактором запарафинирования окажется величина поверхности контакта фаз, а не природа поверхности подложки. Поэтому при модификации поверхностной энергии подложки воздействием присадки влияние последней на величину адгезионного взаимодействия парафина с поверхностью подложки окажется мало-значимым. Реальность такого предположения подтверждается результатами работы /44/, где установлено, что шероховатые поверхности любой природы достагочно интенсивно запарафинируются в условиях скважины. [c.147]

    Трение твердых тел, согласно современным представлениям [6, 17,27,41], имеет двойственную (молекулярно-механическую или ад-гезионно-деформационную) природу. Считается, что контакт твердых тел вследствие волнистости и шероховатости поверхностей происходит в отдельных зонах фактического касания (рис. 6.1). Суммарную площадь этих зон называют фактической, или реальной, площадью касания твердых тел. Под фактической площадью касания понимают зоны, в пределах которых межатомные и межмо.лекуляр-ные силы притяжения и отталкивания равны. Фактическая площадь касания в пределах нагрузок, широко используемых в инженерной практике, невелика около 0,001-0,0001 номинальной кажущейся площади касания. Вследствие этого в зонах контакта возникают зна-76 [c.76]

    Анализ экспериментальных данных изучения износостойкости полимеров, находящихся в высокоэластическом (резины) и стеклообразном (пластмассы) состояниях, свидетельствует о том, что-износ — явление сложное, отражающее комплекс процессов, протекающих как в граничных слоях полимера, так и на поверхности трения. Между износом и внеи1ним трением полимеров существует прямая связь. Чаще всего износ полимерных материалов обусловлен их усталостным разрушением в результате многократной деформации полимера в пятнах фактического контакта. Усталостный износ более характерен для полимеров, находящихся в высокоэластическом состоянии. Другой вид износа связан с процессом резания системой, имеющей острые выступы поверхности полимера. Этот так называемый абразивный износ более характерен для твердых полимерных материалов (различных пластмасс). Если усталостный износ можно рассматривать как многоактный процесс, то абразивный износ является процессом одноактным. При трении полимеров по гладким поверхностям обычно имеет место усталостный износ, а при трении по шероховатым поверхностям — абразивный износ. [c.382]

    Если поверхность заготовки неровная, то анодное растворение происходит в первую очередь на вершинах выступов, которые сглаживаются, и шероховатость по-вв])хности уменьшается. Следовательно, таким образом можно осуществлять шлифование изделий, получая значения параметра шероховатости поверхности г = 0,63-Ь - -0,020 мкм. Такого рода чистовая или отделочная об-ра(5отка проводится при малых плотностях тока (0,5— 10 А/см ). Если нужна высокая производительность, а качество поверхности не играет существенной роли (./ = 160- 20 мкм), то можно повысить плотность тока вплоть до 100—500 А/см- (так называемая черновая анодно-механическая обработка). В этом случае наравне с анодно-механическим разрушением обрабатываемого металла возникает его эрозионное разрушение (рис. 8.5) вследствие появления многочисленных точек контакта 3, в которых плотность тока достигает тысячи A/ м . В этих местах возникают микродуги, металл сильно нагревается, плавится, частично испаряется и взрывообразно выносится из зоны обработки. [c.354]

    Весьма важным вопросом при контроле швов любой толщины является обеспечение стабильного акустического контакта искателя с изделием в процессе контроля, т. е. в динамическом режиме. В ультразвуковой дефектоскопии используют два способа ввода энергии упругих колебаний в изделие — контактный и иммерсионный. Независимо от способа ввода ультразвука в изделие высота шероховатостей поверхности, их периодичность и форма влияют на амплитуду сигнала, его длительность, спектральный состав и характеристику направленности поля искателя [42, 54, 57, 64, 90,129]. Однако при иммерсионном способе ввода исключается влияние толщины слоя контактной жидкости между поверхностями изделия и искателя. В слое вследствие многократных отражений ультразвукового импульса возникают интерференционные явления, влияющие на его амплитуду. Чем больше разница в акустических свойствах между протектором искателя, слоем и материалом изделия, тем сильнее влияет изменение величины зазора на амплитуду [18]. Изменение толщины слоя на десятые доли миллиметра может в несколько раз и,зменкть амплитуду, [c.200]

    На выносливость сталей заметное влияние оказывает финишная опера-О) ция — шлифование, т.е. важное значение имеет, какими кругами его про- водили. У закаленной стали ШХ15 условный предел коррозионной выносливости в 3 %-ном растворе Na I при базе 5 10 цикл после шлифования алмазным, боразонным и электрокорундовым кругами составляет соответственно 65 25 и 17 МПа [39]. У закаленной стали 40Х наблюдается такая же закономерность, однако различие в величине условного предела коррозионной выносливости значительно меньше. При злектро-корундовом шлифовании происходит отпуск закаленных сталей на глубину 110—150 мкм, микротвердость поверхностных слоев уменьшается на 15—20 % и возникают растягивающие остаточные напряжения 370— 570 МПа. При алмазном шлифовании, благодаря лучшим режущим свойствам алмазов, температура и давление в зоне контакта круга и изделия меньше, чем при электрокорундовом, поэтому в поверхностных слоях закаленных сталей обнаружено некоторое повышение микротвердости и наличие остаточных сжимающих напряжений до 900—1200 МПа [39]. Остается, однако, непонятным, почему при столь значительных сжимающих напряжениях, возникающих в поверхностных слоях образцов в результате алмазного шлифования и низкой шероховатости поверхности, предел выносливости увеличился несущественно, а в коррозионной среде на 10-50 МПа. [c.167]

    Вполне вероятно, что частицы золя кремнезема могут отличаться по степени шероховатости поверхности. К тому же значения удельных поверхностей, определяемые по адсорбции азота, могут зависеть отчасти от способа предварительного высушивания золя. Упоминавшийся выше метод определения удельной поверхности по адсорбции азота включал процессы деионизации золя обработкой его смесью анионо- и катионообменных смол, регулирования значения pH до 2,0 и выпаривания золя при 25—40°С до тех пор, пока не произойдет гелеобразование. Гидрогель подвергали диспергированию по крайней мере в десятикратном избыточном по массе количестве н-пропилового спирта и высушивали на воздухе. Полученные образцы затем нагревали на воздухе при температурах 150 и 350°С в течение 16 ч, после чего определяли значения удельной поверхности этих образцов по адсорбции азота с использованием стандартного метода БЭТ. Значения удельных поверхностей, определяемых на двух идентичных образцах, высушенных при указанных выше температурах, отклонялцрь между собой менее чем на 2 %. В том случае, когда размер частиц оказывался меньше 7—8 нм, то даже при очень осторожном проведении процедуры гелеобразования и высушивания кремнезема не удалось предотвратить некоторую потерю величины удельной поверхности из-за возникновения контактов между частицами. [c.481]

    Ювенильные (чистые, свежеприготовленные) металлические поверхности обычно хорошо смачиваются металлами, т е. в системе твердый металл - жидкий металл 0 <90°. Однако наличие оксидных пленок или других примесей на поверхности контакта приводит к нарушению смачивания. В таких случаях добиться растекания жидкого металла по твердому помогает специальная температурная обработка, прежде всего повышение температуры расплава (например, при контакте жидкого олова с молибденом и вольфрамом при сравнительно невысоких температурах формируются большие краевые углы). Однако при достаточном нагреве окислы Мо и XV сублимируют и смачивание 8п значительно улучшается. Большуто роль при этом ифают также чистота и шероховатость поверхности, применение флюсов, легирование. [c.100]

    Подготовка поверхности металлов. Строение кристаллической реи1етки, степень шероховатости, наличие оксидов на поверхности металла и ряд других факторов оказывают значительное влияние на прочность соединений. Снятие поверхностного слоя приводит обычно к активации поверхности, уменьшению угла смачивания и повышению площади контакта склеиваемых материалов. Кроме того, при наличии шероховатой поверхности образование микротрещин в пленке клея при нагружении [56] протекает при более высоких значениях напряжений, чем в случае соединений с гладкой поверхностью, так как при этом изменяется доступность к поверхности субстрата. Все эти факторы обусловливают зависимость прочности от степени шероховатости (табл. 5.4). В результате механической обработки поверхности субстрата угол смачивания снижается примерно вдвое, а прочность возрастает в пять раз. Эффективность этого метода сохраняется, если клеевые соединения работают при температурах ниже Тс пленки клея. При более высоких температурах вследствие резкого ухудшения когезионных свойств клея влияние степени шероховатости поверхности на прочность соединений незначительно. [c.121]

    Фрикционные шумы. Для СТК характерен особый вид помех, называемых фршащонными шумами [203]. Их причина -ускорение приемного преобразователя при его перемещении по шероховатой поверхности ОК. В результате в зоне контакта появляется переменная сила, вызывающая [c.306]


Смотреть страницы где упоминается термин Шероховатость поверхностей контакта: [c.123]    [c.224]    [c.231]    [c.103]    [c.59]    [c.83]    [c.79]    [c.189]    [c.47]    [c.42]   
Смотреть главы в:

Поверхностная обработка пластмасс -> Шероховатость поверхностей контакта




ПОИСК





Смотрите так же термины и статьи:

Поверхности шероховатые

Поверхность контакта фаз



© 2025 chem21.info Реклама на сайте