Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Часть вторая , Качественный анализ Методы качественного анализа

    Селективных и специфичных реакций известно немного, поэтому на практике применяют специальные приемы для устранения мешающего влияния компонентов, присутствующих в системе наряду с определяемым веществом. Устранить помехи можно двумя способами а) разделением системы на составные части (подсистемы), обычно путем деления на фазы, причем мешающий и определяемый компоненты должны находиться в разных подсистемах (фазах) б) подавлением мешающего влияния внутри анализируемой системы (маскирование). В соответствии с этими способами устранения помех различают два метода качественного анализа систематический и дробный. В первом основным приемом является разделение, а маскирование играет подчиненную роль основное содержание второго—маскирование, а разделение на фазы имеет вспомогательное значение. Не следует противопоставлять эти два метода, при анализе вещества они часто дополняют друг друга. [c.115]


    Первая часть курса Качественный анализ и глава VI Физико-химические методы анализа второй части написаны А. П. Крешковым, остальные главы второй части Количественный анализ А. А. Ярославцевым. [c.10]

    Книга состоит из четырех частей. В первой части описано возникновение, становление и разработка структурной теории, особенно подробно — электронных представлений. Во второй части рассмотрено взаимопроникновение и взаимодействие физической и органической химии. В третьей части — развитие различных физических методов качественного, количественного и структурного анализа органических соединений. В четвертой части — применение и сочетание химических и физических методов в аналитической органической химии, включая расчетные методы, позволяющие перебросить мост между данными структурной теории, физико-химических и физических методов исследования. [c.8]

    Ко второму типу параметров отнесем такие, которые обычно описывают словесными (нечеткими) терминами, а при необходимости перевода в числовой вид это осуш ествляется только при непосредственном участии человека, в частности, с использованием экспертных оценок. Такой способ формализации качественной информации обусловлен уровнем знаний о рассматриваемом параметре и (или) наличием способов формализации. К параметрам второго типа в первую очередь относятся такие, которыми характеризуют качество вырабатываемой продукции химикотехнологическими производствами. Здесь под качеством продукции понимается интегральная характеристика, которая складывается из ряда взаимосвязанных между собой компонентов, часть которых в отдельности не измеряется методами количественного анализа, а контролируется визуально человеком. Примером такой характеристики является качество изделий из стекла. Качество листовых стекол оценивают по оптическим искажениям. На эту характеристику оказывают сущ ественное влияние геометрия поверхности стекла, метод оценки, субъективизм контролера. Потребность в формализации качественной информации о качестве листового стекла диктуется необходимостью решения следующих задач 1) исключения субъективизма в оценках качества изделий, 2) разработки методов и технических решений для автоматической классификации изделий, 3) нахождения взаимосвязей между показателями качества листового стекла и технологическими параметрами, а также решения задач технической диагностики при ухудшении качества вырабатываемой продукции. [c.15]


    В сантиграмм-методе масса исследуемого вещества составляет чаще всего 50—60 мг сухого вещества или 1 —1,5 мл раствора. Этот метод полностью может опираться на систематический ход анализа, разработанный для грамм-метода, который раньше называли макро-методом. Различие будет только в массе анализируемого вещества и частично в технике эксперимента. Реактивы, используемые в качественном анализе, можно условно разделить на реактивы индивидуального и общего пользования. Первые хранят в специальном многогнездном штативе с небольшими склянками емкостью 10—15 мл (рис. 12). Поэтому главная часть всех нужных реактивов всегда должна быть под рукой Вторые хранят на полках или в открытых шкафах лаборатории. Основная часть реактивов—растворы, и известная часть — твердые вещества. Все склянки в многогнездном штативе расположены в определенном порядке, который не следует нарушать. Жидкие реактивы отбирают капельницей, а склянки с реактивами остаются на месте. Чтобы исключить загрязнение реактивов, нельзя прикасаться кончиком пипетки к стенкам пробирки. Нельзя сливать обратно в склянку неиспользованную часть реактива. Твердые реактивы отбирают лопаточкой или ложечкой. [c.71]

    Т) этой и двух последующих главах рассмотрены равновесие адсорбции и кинетика элементарных гетерогенных каталитических реакций. Факторы, определяющие закономерности адсорбции и гетерогенного катализа, весьма разнообразны и часто с трудом поддаются учету. Среди них решающими являются число мест, которые занимает адсорбированная частица на поверхности конфигурация активированных комплексов неоднородность поверхности катализатора взаимное влияние адсорбированных частиц и коллективное взаимодействие адсорбированных частиц с поверхностью. При анализе равновесия применены методы статистической физики. При обсуждении кинетики использована теория абсолютных скоростей реакций [32], которая несмотря на не вполне последовательный характер исходных положений дает возможность правильно (как качественно, так зачастую и количественно) описать кинетические закономерности для подавляющей части химических превращений. Кроме этих строгих методов, для характеристики эффектов взаимодействия применена также полуэмпирическая модель. Теория абсолютных скоростей есть но существу равновесная теория, поэтому удобно исследовать равновесие и кинетику совместно. Второй довод в пользу такого рассмотрения заключается в том, что тип адсорбции частиц и активированных комплексов определяет и адсорбционные изотермы, и кинетические закономерности. [c.53]

    I — общие методы II — качественный анализ III — методы количественного определения и разделения IV — специальные методы. Вторая и третья части состоят из многих томов, каждый из которых посвящен одному элементу или группе их. [c.29]

    Но последний случай оказывается особенно желательным в случае качественного анализа со снимками, полученными высокочастотным методом, так как он помогает быстро ориентироваться относительно связи спектральных линий с препаратом или противоположным электродом. На рис. 16 приведен снимок внутренности яблочной косточки, полученный высокочастотным методом с золотой проволокой в качестве противоположного электрода. Снимок этот получен с большим спектрографом Ц е й с с а при фокусном расстоянии от чечевицы коллиматора в 40 см, расстоянии искры от щели 5 см и без отображающей чечевицы. С первого же взгляда бросается в глаза группа спектральных линий в нижней части спектра и другая группа их в верхней части. Только самые сильные линии переходят — правда, с все убывающей интенсивностью — в другую половину спектра. Эта интенсивность, проходящая через весь спектр сверху до низу, обусловлена равномерным освещением щели разницы в интенсивности возникают из-за названного выше неясного изображения самого источника света на щели, потому что расстояние между чечевицей и источником света лишь на 12% больше, чем фокусное расстояние чечевицы. Таким образом сейчас же можно определить, какие спектральные линии исходят от золотого электрода и какие От препарата (Мд, Ре, Мп, 51, Р, В). Это может иметь и очень большое принципиальное значение. Нам придется еще и в других местах упоминать, что никогда нет гарантии в полной чистоте противоположного (второго) электрода. Так чистейший золотой электрод всегда еще содержит следы меди, серебра, а также свинца и других элементов. Уже и сама по себе слабая интенсивность основных линий второго электрода предполагает тем более слабую интенсивность спектральных линий его примесей. [c.23]

    В некоторых случаях для достижения заметного растворения очень трудно растворимых соединений приходится использовать реактивы, обеспечивающие комбинированное воздействие на оба иона кристаллической решетки растворяемого соединения, например, окисление одного из них и одновременное обращение второго иона в комплексное соединение. Расчеты в подобных случаях, конечно, усложняются, так как число неизвестных возрастает и для их определения приходится комбинировать различные приемы, предложенные выше для более простых случаев. Решение задач этого рода всегда следует начинать упрощенным способом, который дает приближенную оценку концентраций компонентов равновесия и тем самым облегчает точное решение. Очень часто при вычислениях, связанных с вопросами качественного анализа, довольствуются одними упрощенными методами расчета. [c.283]


    Представляет собой вторую часть учебника "Аналитическая химия. Качественный анализ", вышедшего в 1991 г. Рассмотрены основы теории количественного анализа, практические занятия, лабораторные работы, типовые расчеты. Описаны техника и приемы работы, аппаратура и приборы, используемые в химических методах количественного анализа. [c.42]

    Реализуя профессиональную направленность, предлагаемый курс основ аналитической химии содержит четыре части. Первая часть включает общие теоретические основы аналитической химии (8 лекций). Часть вторая — раздел качественного анализа в объеме двух лекций и соответствующий практикум. Химические методы количественного анализа совместно с инструментальными методами, а также их теоретические основы в объеме 7 лекций будут рассмотрены соответственно в третьей и четвертой частях пособия. [c.7]

    Реакции обнаружения молекул. Методы обнаружения неорганических и органических веществ различаются, поскольку в первом случае почти всегда используют ионные реакции, во втором — в основном молекулярные. Реакции между ионами протекают в большинстве случаев быстро и однозначно, реакции между молекулами часто идут медленно, не полностью и сопровождаются побочными реакциями (ср. стр. 46). Это обстоятельство, а также очень большое число соединений, с которыми имеют дело в органической химии, нередко мало отличающихся по свойствам (гомологические ряды), делают обнаружение и исследование органических веществ несравненно более трудной аналитической задачей, чем неорганических соединений. Задача качественного органического анализа чаще всего заключается в установлении идентичности неизвестного вещества с уже известным соединением или в выяснении природы нового неизвестного соединения. Несмотря на то что в случае органических веществ иногда и имеют дело с ионами, последние, за малыми исключениями, обладают сложной структурой, и поэтому такие простые ионные реакции, как в неорганическом анализе, для них становятся едва ли возможными. [c.56]

    Теоретические расчеты межмолекулярных взаимодействий пока еще, как правило, имеют значение для качественных выводов об их особенностях. Количественные характеристики в подавляющем большинстве случаев получаются с помощью эксперимента. Экспериментальные данные об энергии межмолекулярного взаимодействия могут быть описаны с помощью эмпирических формул. Некоторые из них будут рассмотрены в этой главе. Почти все они основаны на анализе свойств разреженных газов. Формулы, пригодные для эмпирического описания межмолекулярных взаимодействий в разреженных газах, часто применяют для тех же целей к жидким системам. Здесь порой упускают из виду следующее. Во-первых, в разреженных газах среднее расстояние между молекулами велико, поэтому сравнительно большой вклад во взаимодействие вносят дальнодействующие силы. (Когда молекулы электрически нейтральны, то это в основном дипольные и лондоновские взаимодействия.) В жидкостях же, как мы видели,очень важна роль близкодействующих сил. Во-вторых, энергия реактивного взаимодействия полярных молекул с окружающей средой в газах мала, а в жидкостях велика и может существенно изменять энергию образования связей между молекулами. В этом отношении формулы, основанные на свойствах газов, ведут к недооценке роли дальнодействующих сил. В-третьих, при переходе от жидкой фазы к парам межмолекулярные силы могут испытывать качественные изменения, обусловленные влиянием коллективного взаимодействия большого числа частиц. Так происходит, например, при испарении металлов. В-четвертых, эмпирические формулы представляют собой усредненную эффективную характеристику межмолекулярных сил. Способ усреднения обычно не ясен, но он должен зависеть от метода исследования энергии взаимодействия и влиять на математическую форму эмпирической потенциальной функции Е(Я) и значения фигурирующих в этой функции параметров. [c.92]

    В первой части (главы 1-Ш) изложены материалы по основам газовой хроматографии, аппаратурному оснащению метода, перечислены факторы, влияющие на хроматографическое разделение веществ. Во второй части (главы 1У-У) рассмотрены приемы качественного и количественного анализа, приведены практические работы. [c.2]

    Этот недостаток может быть устранен, если все анализируемые соединения превращать в какое-либо одно соединение. При работе с катарометром проводят конверсию до двуокиси углерода или водорода. В результате конверсии, во-первых, отпадает необходимость в продолжительных и трудоемких калибровках прибора, при этом содержание комнонентов для соединений одного класса в весовых процентах можно получить непосредственно из площадей пиков образовавшейся двуокиси углерода во-вторых, увеличивается чувствительность детектирования, что является следствием как повышения концентрации измеряемой двуокиси углерода (одна молекула органического соединения обычно дает нри сгорании несколько молекул двуокиси углерода), так и выбора более оптимальных условий измерения (низкая температура ячейки, большая сила тока и т. п.) в-третьих, упрощается конструкция катарометра, появляется возможность использовать низкотемпературный катарометр для детектирования высококипящих соединений (конвертер позволяет термостатировать катарометр, например, при комнатной температуре, несмотря на высокую температуру хроматографической колонки). В случае необходимости дополнительного исследования анализируемых соединений (например, при помощи качественных реакций), можно разделить газовый поток и подвергать конвертированию только его часть. На практике нри анализе органических соединений применяются три основных экспериментальных метода конвертирование до Og, до Hg и до СН4. [c.177]

    Качественный элементный анализ имел всегда в органической химии меньшее значение, чем в неорганической, тем более что методы первого часто сводились к методам второго. Так, ддя суждения присутствии элементов, которые в своих неорганических соединениях нелетучи, рекомендовалось высушивать органические вещества, а затем превращать их в золу. Эта зола может содержать, как полагали в 50-х годах прошлого века, кальций, магний, железо, натрий, калий в виде окислов или в соединении с кислотами угольной, хлористоводородной, серной, фосфорной, а также кремнезем, анализ которых рекомендовалось проводить общеупотребительными способами [16, с. 469]. [c.289]

    Стремительный рост производства полимеров и их применения за последние десятилетия вызвал резкое увеличение объема исследований, проводимых методом инфракрасной (ИК) спектроскопии. Первые крупные работы в этой области появились в 1945 г. Дальнейший прогресс ИК-спектроскопии полимеров был связан как с созданием надежных спектрометров, так и с развитием теоретических основ колебательной спектроскопии макромолекул. Всего лишь 25 лет назад было сказано следующее [1645] Если для молекулы аммиака в настоящее время можно провести полный теоретический анализ колебаний, из которого удается определить длину и угол связи с точностью в 1%, о полимерах, исходя из их ИК-спектров, вряд ли можно сказать больше, чем то, что они содержат те или иные химические группы . Р С момента этого высказывания значительные изменения претер-пело то, что относится к его второй части. Полный анализ коле- ) баний возможен теперь для ряда линейных полимеров, содер- 0 жащих простые звенья. Качественные данные также содержат [c.17]

    В 1800 г. было настолько мало известно об органической химии, что ее едва ли можно было назвать наукой. В 1807 г. Берцелиус дал определение органических веществ как веществ, происходящих от живой материи. (В настоящее время органическими веществами называют фактически все соединения углерода, как природные, так и синтетические). За двадцать лет до этого Антуан Лавуазье изобрел метод сжигания органических веществ и анализа образующихся при этом газов. С помощью этого метода им было установлено наличие углерода во всех органических веществах, а также обнаружены водород и азот, наиболее часто встречающиеся в них. С 1800 по 1831 г. были разработаны более совершенные методы анализа, позволяющие помимо качественного определения вычислять соотношение углерода, водорода, азота и кислорода в органическом соединении. В то же время структура органических молекул практически была не изучена. Например, структура бензола, крайне важного для промышленности красителей продукта, была установлена лишь во второй половине XIX в. [c.14]

    Русское издание справочника состоит из четырех томов, разделенных на 0 выпусков. В первом выпуске первого тома содержатся сведения по организации и п[юек-тированию лабораторий, по отбору проб и организации работы. Далее описаны ос швы качественного анализа иеоргаиических и органически.х соединений, а также методы количественного анализа объемный анализ, электроанализ, потенциометрия и конду1Сто-метрия. Во втором выпуске первого тома описаны физические методы исследований измерение температуры, давления, удельного веса и др., оптические измерения (1 оло-риметрия, спектральный анализ, поляриметрия, рентгеновский анализ), а также методы TexHH4f K0r0 анализа газов, микрохимического и коллоидно-химического анализа. Первый выпуск первой части второго тома содержит описание методов анг.лиза топлива, воды и воздуха. [c.485]

    Исторически для лолучения информации о качественном и количественном составе вещества прежде всего использовали химические методы, т. е. методы, основанные на получении в результате химической реакции того или иного соединения, обладающего определенными аналитическими свойствами. Эта ситуация закреплена в самом названии аналитическая химия . Поэтому классические методы аналитической химии, особенно в той части, которая касается анализа неорганических веществ, опираются прежде всего на неорганическую химию как более общую дисциплину. Кроме того, нужно есть следующее. Преподавание аналитической химии в высшей щколе имеет помимо конечной главной цели — обучение основам аналитической химии — также задачу научить химическо му мышлению. Распространено мнение (и оно вполне оправедливо), что аналитическая химия представляет собой идеальное средство для достижения этой, второй цели, иначе говоря, аналитическая химия естественно входит в структуру общехимических дисциплин вуза. Поэтому, как правило, курс классической аналитической химии, представляющий по существу неорганическую аналитическую химию, излагается В1 вузах сразу же после неорганической химии, а иногда совмещается с ней в единый курс. Именно для, такого вузовского курса и написан двухтомный учебник Анорганикум , изданный в ГДР. [c.5]

    На проведение качественного анализа дробным методом расходуется около V2 части минерализата (приблизительно 100 мл) что соответствует навеске 50 г органа. Вторая половина минерализата используется для количественного определения обнаруженного элемента. Количественное определение имеет особое значение, так как дробный метод анализа чувствителен. Его чувствительность лежит на границе с естественным содержанием большинства токсикологически важных элементов. [c.296]

    Метод анализа, основанный на сравнении качественного и количественного изменения световых потоков при их прохождении через исследуемый и стандартный растворы, называется колориметрическим. Это общее определение. Однако если подойти более строго, то данный метод основан на измерении ослабления светового потока, происходящего вследствие избирательного поглощения света определяемым веществом, и правильнее называть его абсорбционным спектральным анализом, Существуют спектрофотометрический и фотометрический методы абсорбционного анализа. Первый основан на измерении в монохроматическом потоке света (свет с определенной длиной волны /.), а второй — на измерении в не строго монохроматическом пучке света. Если рассматривать вопрос под таким углом зрения, то колориметрия — метод, основаный на измерении в видимой части спектра. Но мы под колориметрией будем подразумевать все методы определения концентрации вещества в растворе по поглощению света. [c.469]

    Вторая часть предварительного исследования вещества — качественный элементарный анализ, который показывает, какие из элементов содержатся в этом веществе. Органическое вещество, естественно, содержит углерод и обычно водород. Присутствие последнего легко подтверждается окислением вещества сухой окисью меди (II), в ходе которого весь имеющийся водород превращается в воду. Из других неметаллов, которые могут иметься в веществе, чаще всего встречаются галогены, азот, фосфор, сера и кислород. Присутствие кислорода может быть иногда подтверждено по пробе окисления солей железа(П1). Для этого из хлорида железа (III) и роданистого калия готовят реагент, содержащий комплексную соль Ге +[Ре(8СМ)е] . Если работать с бензольным или толуольным раствором реагента, то он дает темно-крас-ное окрашивание со многими (хотя и не со всеми) кислородсодержащими веществами. В основе всех качественных реакций на другие элементы лежит принцип превращения их в ионные формы, которые можно идентифицировать методами неорганического анализа. Так, например, в пробе плавления с натрием по Лассеню небольшое количество органического вещества сплавляют с натрием. Если в веществе имеется азот, то в растворе после обработки расплава он появляется в виде цианид-иона, сера — в виде сульфид-иона, а галоген — в виде галоген-иона, причем идентификация всех этих ионов воз-мон на с использованием общих методов анализа анионов. Фосфор обнаруживается в виде фосфата. [c.14]


Смотреть страницы где упоминается термин Часть вторая , Качественный анализ Методы качественного анализа: [c.2]    [c.2]    [c.81]    [c.154]   
Смотреть главы в:

Аналитическая химия -> Часть вторая , Качественный анализ Методы качественного анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

К части второй

Качественный методы

ЧАСТЬ И. КАЧЕСТВЕННЫЙ АНАЛИЗ Методы качественного анализа

Часть П. Качественный анализ



© 2025 chem21.info Реклама на сайте