Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение воды. Водородные связи

    Молекула воды имеет угловое строение входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода. Межъядерные расстояния О-И составляют 96 пм, расстояние между ядрами атомов водорода равно примерно 150 пм. Строение воды, природа ковалентной связи О-Н и межмолекулярной водородной связи с участием молекул воды нами рассмотрены в гл. 4. [c.212]


    Отметим, что во всех проблемах связанной воды водородная связь является главным администратором , допускающим те или иные взаиморасположения молекул воды друг с другом, а также с неводными частицами. Так, уголковое строение и направленный характер Н-связей обусловливают своеобразное размещение ближайших соседей молекулы воды. Для сравнения рассмотрим картину заполнения пространства шарами. Шары одинакового радиуса располагаются так, что у каждого из них 12 соседей 6 в плоскости экватора, 3 снизу и 3 сверху. Наименьший угол между отрезками, соединяющими центральный шар с ближайшими соседями, равен 60°, В то же самое время наименьший угол между отрезками, соединяющими молекулу воды с ближайшими соседями, из-за направленного характера водородных связей обяз.ан быть равным 104,5°, т, е, валентному углу при атоме кисло- [c.97]

    СТРОЕНИЕ ВОДЫ. ВОДОРОДНЫЕ СВЯЗИ [c.89]

    В жидкой воде молекулы ассоциированы, т.е. объединены в более крупные частицы, причем устанавливается равновесие между молекулами воды, связанными в ассоциаты, и свободными молекулами воды. Наличие ассоциатов повышает температуру и кристаллизации, и испарения воды, и диэлектрическую проницаемость. При увеличении температуры растет доля свободных молекул. При испарении воды ассоциаты разрушаются и водяной пар при невысоких давлениях состоит из свободных молекул Н2О. Однако при повышении давления молекулы воды сближаются и образуют водородные связи, происходит ассоциация молекул. По мере повышения давления пар приближается по своему строению к жидкому состоянию. Это вызывает увеличение растворимости в паре соединений с ионными связями. [c.343]

    Необычные свойства воды, о которых говорилось выше, обусловлены особенно сильным взаимным притяжением молекул. Эта сила определяется особенностью строения, называемой водородной связью. [c.267]

    Для описания структуры граничных слоев воды была предложена [71] модель анизотропных доменов, размеры которых вдоль осей а ъ Ь (вдоль плоских поверхностей частиц слоистых силикатов) существенно больше, чем вдоль оси с (перпендикулярно поверхности пластинчатых частиц). Такое строение граничных слоев позволяет объяснить, с одной стороны, их повышенную вязкость (при приложении внешней нагрузки текут не индивидуальные молекулы, а домены), а с другой,— меньшее число водородных связей, в которых участвует каждая молекула воды (этот вывод, естественно, вытекает из анизотропной структуры ассоциатов). [c.40]


    Неоднократные попытки определить относительное содержание молекул, свободных в данный момент от связей, и молекул, образующих одну, две, три или четыре водородные связи с другими молекулами, пока не привели к согласованным результатам. Несомненно, что с повышением температуры усиление теплового движения вызывает постепенное уменьшение степени связанности молекул. Изменение внутреннего строения воды с температурой сказывается и на изменении с температурой различных свойств ее В этом отношении ода может заметно отличаться от других жидкостей. [c.165]

    Водородная связь обусловливает также строение воды и льда (стр. 136), жидкого и твердого аммиака (стр. 391), кристаллов кислых солей (стр. 294) и т. д. [c.108]

    Значение водородной связи, которая широко распространена, велико в биологических и химических процессах. Существование Н-связи в воде определяет благоприятные условия для жизни на Земле. Эта связь существенна для структуры белков и многих других веществ, необходимых для всего живого. Возможность образования Н-связи параллельно с обычными валентными связями необходимо всегда учитывать при изучении строения веществ и их реакционной способности. Возникновение Н-связей, которое облегчает перенос протона, имеет существенное значение в кислотноосновном катализе, окислительно-восстановительных и многих подобных и важных в науке и технике процессах. Не случайно гак многочисленны в последние годы исследования, посвященные вопросам природы и механизма действия водородной связи. [c.128]

    Особые свойства воды являются отражением электронного строения ее молекулы, которая имеет угловую структуру атом кислорода в ней находится в состоянии 5р -гибридизации. Молекулы воды ассоциированы главным образом за счет водородных связей (см. 5.9). [c.248]

    Резко отличается вода и по изменению объема (и плотности) с температурой. Все жидкости, кроме воды, с повышением температуры всегда увеличиваются в объеме. Вода же при 4,0°С (точнее при 3,98°С) обладает наибольшей плотностью (рис. 8.), т. е. наименьшим объемом. Это явление, долгое время не находившее объяснения, становится понятным, если учесть изменение внутреннего строения воды в зависимости от температуры, т. е. уменьшения доли молекул, связанных между собой водородными связями. [c.12]

    В жидкой воде устанавливается равновесие между связанными в ассоциаты и свободными молекулами. При повышении давления молекулы воды сближаются, образуют водородные связи, происходит ассоциация молекул. По мере повышения давления пар приближается по своему строению к жидкому состоянию. Это вызывает увеличение растворимости в паре соединений с ионными связями. [c.83]

    Водородная связь проявляется в том, что атом водорода может связывать два других атома, являясь мостиком между ними. Например, существует ион НРг. В воде атом водорода, соединенный с атомом кислорода электронной парой, может притягивать и другой соседний атом кислорода из другой молекулы воды. Благодаря этому в юде такие связи распространяются во всех трех измерениях, и при этом образуются как бы бесконечные цепи и кольца, подобные полимерам. Такое строение воды обусловливает ряд ее аномальных свойств (например, максимум плотности при 4°С). Существование водородной связи объясняется весьма малым размером атома водорода. Поэтому его положительно заряженное ядро —протон — отличается исключительно большим электростатическим полем. Воздействие этого поля приводит к притяжению атомов с избытком электронов и возбуждению временных диполей в нейтральных атомах. [c.158]

    Водородные связи способствуют образованию разнообразных структур и играют большую роль среди факторов, определяющих геометрические конфигурации и свойства многих химических систем. Эти связи существуют в кристаллах льда и в жидкой воде, стабилизируют спиральную форму молекул белков (наряду с ди-сульфидными связями), обусловливают полимеризацию молекул органических кислот, цепное строение бикарбонатных ионов О О [c.133]

    Молекула воды имеет угловое строение в вершине угла, равного в парах 104"27 (во льду 109°), помещается атом кислорода, на расстоянии 0,096 нм помещаются атомы водорода. Электронные облака водородных и кислородных атомов перекрываются так, что их оси направлены к углам тетраэдра. К двум другим углам тетраэдра направлены оси облаков jo-электронов кислорода, так что в целом электронная структура молекулы воды тетраэдрическая. Пары электронов атома кислорода, не использованных для связи с протонами, создают существенный избыток электронной плотности в одной части молекулы, другая часть (та, где находятся протоны) имеет избыточный положительный заряд это обстоятельство наряду с угловой формой молекулы объясняет наличие у воды момента диполя и, как следствие, сил взаимодействия между молекулами Н—О—И. Между внешними парами электронов кислорода и протонами соседних молекул воды возникают водородные связи, играющие существенную роль в формировании структуры всей массы жидкости. Каждая молекула воды может участвовать в образовании четырех таких связей две из них образуются [c.243]


    Растворимость газов в воде уменьшается в присутствии полярных или ионных веществ. Это объясняется тем, что они связывают часть молекул растворителя и на растворение газа остается меньшее количество несвязанного растворителя. Ионные (или полярные) вещества гораздо прочнее связываются с молекулами растворителя, чем газы. Вещества легко растворяются в родственных им с точки зрения химической связи растворителях (правило — подобное в подобном). Смысл его с позиций современных представлений о строении молекул состоит в том, что если у растворителя молекулы неполярны или малополярны, то он будет хорошо растворять вещества с неполярными или малополярными молекулами, хуже — вещества с большей их полярностью и практически не будет растворять вещества, построенные по ионному типу. Данное правило можно показать на примере растворения одной жидкости в другой. Так, метанол или этанол, будучи полярными веществами, легко смешиваются с водой в любых соотношениях. Известно, что молекулы спиртов ассоциированы за счет водородных связей это характерно и для жидкой воды. При смешении этих веществ полярные молекулы Н2О взаимодействуют с молекулами С2Н5ОН и между ними формируются водородные связи. Вследствие этого происходит большее разупорядочение молекул спирта и воды, что является одним нз важнейших критериев смешения жидкостей уг с другом. [c.112]

    В 1951 г. Полинг выдвинул в качестве модели пространственного строения белковых молекул так называемую а-спи-раль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность цилиндра. Соседние витки располагаются таким образом, что между группами ЫН и СО каждого третьего звена устанавливаются водородные связи (рис. 65). Один виток спирали содержит 3,6 аминокислотных остатка. Степень развития спирали зависит от природы белка и внешних условий. Так, например, поли-1-аланин начинает приобретать в чистой воде конформацию а-спирали, если в полипептидной цепи содержатся более 10 звеньев. В присутствии неорганических солей спираль лучше стабилизируется за счет гидрофобных взаимодействий. [c.636]

    Таким образом, структура ближнего окружения катионов и характер его изменения с температурой и концентрацией определяются в основном электронным строением ионов. Катионы Сс , Со , N1 и Си в отличие от Сс сильно гидратированы в растворе. Гидратируясь, они разрушают собственную структуру воды. С ростом концентрации число-разорванных водородных связей увеличивается, что приводит к уплотнению структуры раствора. Эти структурные особенности растворов отражаются на температурной и концентрационной зависимости скорости ультразвука и адиабатической сжимаемости раствора. [c.287]

    Представление о микрогетерогенном строении водных растворов неэлектролитов получило дальнейшее развитие в работах Ю. И. Набе-рухина. Он совместно с В. И. Корсунским и Г. С. Юрьевым исследовал рассеяние рентгеновского излучения растворами воды с третичным бутиловым спиртом, гексаметилфосфортриамидом, диоксаном пиридином, тетрагидрофураном, изопропанолом и другими органическими соединениями, молекулы которых отличаются формой и размером, взаимодействуют с молекулами НгО посредством водородных связей различной силы. [c.299]

    Таким образом, строение водных растворов неэлектролитов в значительной степени определяется структурой чистой воды и интенсивностью взаимодействия ее молекул с молекулами неэлектролитов. Последние растворяются в воде, если они образуют с молекулами НаО водородные связи. Процесс растворения неэлектролитов сопровождается нарушением собственной структуры воды. Молекулы НгО [c.300]

    Грин, Марчелия и Пайлторп [139] методом молекулярной динамики исследовали структуру воды в тонкой прослойке ъ = 31,4 А) между поверхностями, которые моделировали строение поверхности раскола слюды. На каждой из поверхностей располагалось по 16 атомов О, 6 атомов 81 и 2 атома А1 в их кристаллографических позициях. Над ионами А1 находились нротивоионы Ка , что делало поверхность электронейтральной. В прослойку вводилась 81 молекула воды. Водородная связь между молекулами воды моделировалась другим известным потенциалом — Стиллинджер-2 [169]. Для взаимодействия молекул воды с поверхностями слюды использовался потенциал Леннард—Джонса и электростатический потенциал. [c.231]

    Количество и состояние воды в ионите тесно связано с особенностями строения гидратированного ионообменника. Обычно [20, 119-121] воду, содержащуюся в ионите, делят на две части "связанную", входящую в состав гидратных оболочек фиксированных и подвижных ионов, и "свободную", состояние которой мало отличается от состояния воды вне ионита. Разумеется, в ионите имеется вода, находящаяся в промежуточных состояниях, однако, деление на две части в качестве первого приближения во многих случаях вполне оправдывает себя и оказывается достаточным для понимания сути анализируемого явления. Свойства связанной и свободной воды сильно отличаются. Данными ЯМР-спектроскопии [48] было показано, что количество связанной воды определяется в основном природой противоионов и фиксированных групп, количество свободной воды - природой и степенью сшитости матрицы. В ионитах на углеводородистой основе значительная часть воды является свободной, в то время как в обычных (немодифицированных) перфторированных мембранах из-за сильной гидрофобности полимерных цепей и неспособности их образовывать с водой водородные связи практически вся вода локализуется у фиксированных групп и противоионов. [c.38]

    Важные сведения о химическом строении поверхности и состоянии адсорбированных молекул дает исследование электронных и колебательных спектров. А. Н. Теренин показал, что валентные колебания в гидроксильных группах поверхности кремнезема отчетливо проявляются в инфракрасном спектре в виде узкой полосы 3750 см , если это свободные гидроксильные группы (рис. XVIII, 10а). Эти колебания проявляются в виде размытой полосы, смещенной в более длинноволновую область (в сторону меньших частот), если гидроксильные группы поверхности связаны между собой взаимными водородными связями (рис. XVIII, 10,6). Эти исследования в сочетании с исследованиями дейтерообмена между поверхностью адсорбента и тяжелой водой позволяют легко мсследовать степень и характер гидратации поверхности (гидроксильные группы поверхности 51—ОН легко переходят в 5]—00) и объема кремнезема. [c.504]

    Необычные свойства воды объясняются ее строением. Молекула воды нелинейна — угол между связями Н—О—Н равен 104°27. Связи Н—О ковалентны, однако они полярны, т. е. некоторый положительный заряд несут атомы водорода, а отрицательный — атом кислорода. Вследствие этого связанный атом кислорода способен притягивать атом водорода соседней молекулы с образованием водородной связи, что существенно повышает общую энергию связи. Таким образом, молекулы в воде ассоциированы. В кристаллах льда водородные связи еще сильнее. В силу высокой полярности молекул Н2О вода является растворителем других полярных соединений, не имея себе равных. [c.101]

    Тенденция к образованию водородных связей обусловливает также строение гидратированных протона и гидрооксид-иона. Основываясь на результатах многих исследований, можно считать, что в воде протон присутствует как Н9О4+, а гидроксид-ион— как Н7О4 . Строение этих частиц схематически показано на рис. В.7. Поэтому часто используемые схемы для процесса диассоциации воды [c.355]

    Ион Н9О4+ имеет пирамидальное строение. Центральный атом кислорода связан тремя сильными водородными связями с тремя молекулами воды. Прочность водородных связей может быть количественно охарактеризована высокой энтальпией реакции гидратации протона (АЯ° = —1185 кДж/моль). По данным ИК-спектроскопических исследований в кристаллическом тетрагидрате бромоводорода присутствуют ионы Н9О4+ и Вг . [c.355]

    Донорно-акцепторная схема водородной связи, как указывают К. Е. Яцимирский и другие ученые, хорошо согласуется со строением кристаллов льда атомы кислорода находятся в тетраэдрическом окружении водородных атомов, создается неплотная структура. Молекула Н2О имеет две неподеленные пары электронов и два водородных атома, что оптимально по сравнению с МН, и НР. У ЫНз — три атома водорода и одна неподеленная пара, у НР — три неподеленные пары и один атом водорода. Температура кипения воды поэтому выше, чем аммиака и фтороводорода, хотя фтор более электроотрицспелен, чем кислород. [c.128]

    Строение жидкой воды. Как уже указывалось (см. стр. 260), молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейше упаковки. Если произвести расчет, обратный описанному на стр. 10, и исходя из определенного рентгенографически радиуса молекулы Н2О в структуре льда (1,38 А) подсчитать плотность воды, соответствующую плотнейшей упаковке, то мы получим значение 2,0. Эта величина более чем в два раза превышает плотность льда, которая равна 0,9. [c.279]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]

    Ортоборная кислота Н3ВО3 при 100 С с отщеплением молекулы воды переходит в метаборную НВО2, структурный мотив которой составляет шестичленный цикл триборпой кислоты. Такие циклы связываются друг с другом в бесконечные цепи посредством водородных связей. И ортобораты, и метабораты активных металлов в воде подвержены гидролизу и имеют щелочную реакцию. Строение неизвестной в свободном состоянии тетраборной кислоты может быть представлено следующим образом  [c.141]

    В периодической системе элементов Д. И. Менделеева водород занимает первое место. Особенности строения атома водорода позволяют формально рассматривать его как аналог галогенов. Для водорода характерны реакции, в которых он отдает электрон с образованием иона Н, а также присоединяет электрон с образованием гидрид-иона Н ". Самым распространенным соединением водорода является вода. Ее молекула гюстроена по кова-лентно-полярному типу связи, имеет угловую форму с валентным углом 104,5°. Молекулы воды образуют ассоциации благодаря водородным связям. Из химических свойств воды наибольшую практическую значимость имеют процессы гидратации и гидролиза. Активные металлы восстанавливают из воды водород, а галогены окисляют кислород. [c.164]

    В гидрогелях поры между частицами заполнены интермицеллярной водой. Ее количество может изменяться в широких пределах. В процессе сушки объем гелей уменьшается и достигается окончательная пористая структура ксерогелей. Поверхность частиц гелей поликремниевой кислоты покрыта слоем гидроксильных групп, являющ,их-ся концевыми для внутричастичных полимерных силоксановых цепочек. Такое строение поверхностей гелей кремниевой кислоты способствует образованию водородных связей с водой, спиртами и карбоновыми кислотами. Это взаимодействие может возникать как при адсорбции паров веш,еств на ксерогелях, так и при пропитке их этими веш,ествами в жидком состоянии. [c.244]

    Проведенные ими термохимические исследования показывают, что энергия сольватации ионов мало зависит от природы растворителя и определяется в основном зарядом, радиусом и электронным строением сольватируемого иона. Молекулы воды и спирта взаимодействуют с ионами практически одинаково. При этом сольватирующие молекулы спирта обращены к иону металла атомом кислорода. Группы СНз спирта слабо взаимодействуют с ионами и не образуют водородных связей. Такая конфигурация сольватного комплекса не способствует формированию второго сольватного слоя, а также структур, где молекулы растворителя принадлежат одновременно двум ионам металла, как это наблюдается в структурах некоторых кристаллогидратов. С. И. Дракин, и М. X. Карапетьянц произвели оценку координационных чисел ионов с помощью модельных сольватов, образуемых [c.297]

    Фтористый водород выше 19,5 °С представляет собой бесцветный газ с резким раздражаюш им дыхательные пути действием, а ниже указанной температуры кипения — легкоподвижную бесцветную жидкость. Благодаря особенностям химического строения молекула НР характеризуется высоким значением электрического момента диполя (0,64-Кл-м), превосходящим электрический момент диполя воды, сернистого газа и аммиака. Жидкий фторид водорода имеет большую величину диэлектрической постоянной, равную 83,6 при О °С, НР ассоциирован за счет водородных связей в (НР) , где п изменяется от 1 до 4 в парах, а в жидком фтористом водороде л>4. [c.353]


Смотреть страницы где упоминается термин Строение воды. Водородные связи: [c.340]    [c.16]    [c.441]    [c.169]    [c.184]    [c.435]    [c.238]    [c.284]    [c.288]    [c.108]    [c.140]   
Смотреть главы в:

Молекулярные основы жизни -> Строение воды. Водородные связи




ПОИСК





Смотрите так же термины и статьи:

Вода - самый распространенный растворитель. Физические свойства воды. Строение молекулы воды. Поляризация. Диполь Водородные связи

Водородная связь в воде

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте