Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность. Теория Дебая - Хюккеля

    Во втором приближении теория Дебая — Хюккеля для коэффициента активности дает выражение [c.133]

    Подсчеты коэффициентов активности ио уравнениям теории Дебая — Хюккеля сложны. Они значительно упрощаются наличием таблиц, в которых приводятся значения констант, входящих в уравнения, при различных температурах. Приводим табл. 3 для значений постоянных в уравнении Дебая. [c.86]


    При постоянной ионной силе, созданной фоновым электролитом, произведение коэффициентов активности (157.10) остается постоянным, и в этих условиях концентрационная константа устойчивости (157.9) также сохраняет постоянство при изменении концентрации реагентов. Применимость концентрационных констант, естественно, ограничена той ионной силой и средой, в которой было проведено их определение. Для получения термодинамической константы равновесия Р° произведение коэффициентов активности в (157.10) выражают с помощью уравнений теории Дебая — Хюккеля. Часто для этой цели используется, например, уравнение Дэвис (156.12) в форме [c.445]

    По теории Дебая — Хюккеля коэффициент активности иона связан с его валент- [c.36]

    Она зависит от температуры, диэлектрической проницаемости растворителя и некоторых других его свойств. Для водных растворов и 25°С /4 = 0,509. При средних концентрациях раствора (/ = 0,5...0,8) коэффициент активности иона может быть рассчитан по уравнению Дэвис, также основанному на теории Дебая —Хюккеля  [c.25]

    По теории Дебая — Хюккеля, коэффициенты активности ионов в водных растворах при 20 °С приблизительно вплоть до значения ионной силы / = 0,1 могут быть рассчитаны по формуле (2,- — заряд иона)  [c.373]

    В данном разделе термодинамические свойства растворов электролитов рассматриваются главным образом с помощью коэффициентов активности ионов обычно в рамках теории Дебая—Хюккеля. [c.227]

    Теория Дебая —Хюккеля позволяет рассчитать коэффициент активности ионов в электролите. Коэффициент активности соответствует работе, которая была бы совершена, если 1 моль зеш,ества из некоторого воображаемого раствора без электростатического взаимодействия перенести в раствор, в котором он имеет место. [c.333]

    Найденные коэффициенты активности сравнивают с рассчитанными по уравнению второго приближения теории Дебая — Хюккеля  [c.172]

    Теоретические расчеты коэффициентов активности основаны на представлениях, которые раскрывают природу сил, вызывающих отклонение свойств реальных растворов от свойств идеальных. Для расчета коэффициентов активности ионов используется теория Дебая —Хюккеля. По этой теории ион в растворе рассматривается как заряженная частица, окруженная ионной атмосферой преимущественно из противоположно заряженных ионов, а взаимодействие иона с ионной атмосферой имеет электростатический (кулоновский) характер. Коэффициенты активности зависят от заряда иона и параметров ионной атмосферы ее размеров и плотности. Параметры ионной атмосферы определяются ионной силой раствора /, вычисляемой как полусумма произведений концентрации всех ионов в растворе на квадрат их заряда 2  [c.24]


    Таким образом, при использовании теории сольватации ионов, выведены уравнения зависимости Ig 7O и Ig 7ц от свойств среды. С помощью этих выражений для Ig 7о можно в свою очередь вывести теоретически уравнения зависимости любых свойств электролитов от растворителя (растворимость, константа диссоциации, электродвижущая сила и т. д.), подобно тому, как с помощью выражения для записимости коэффициента активности 7 от копцептрации, выведенного па основании теории Дебая — Хюккеля, можно вывести выражения для зависимости любых свойств электролитов от концентрации. [c.187]

    Теория Дебая — Хюккеля является не теорией коэффициентов активности, а теорией разбавленных растворов сильных электролитов. [c.87]

    Применимость теории Дебая—Хюккеля не ограничивается только вычислением коэффициентов активности. Уравнения (138.4) и другие связывают с коэффициентом активности различные термодинамические свойства раствора. На основе этих соотношений и уравнений (156.13)—(156.19) можно получить выражения для осмотического коэффициента, относительной парциальной моляльной энтальпии и других свойств. [c.444]

    Рассчитывают изотерму адсорбции. Для этого используют изотерму поверхностного натяжения в координатах (Т — 1п С. Наметив на криволинейной части изотермы 5—6 точек, проводят через них касательные (рис. 34,6). (Удобный способ проведения касательных к кривым с помощью зеркала приведен в [34].) Определяют наклон касательных к оси абсцисс как отношение До/А 1п С. Полученные значения подставляют в уравнение ГиббСа (12) в случае неионогенных ПАВ или в уравнение (102) для ионогенных в отсутствие солей. В последнем случае величину среднего коэффициента активности ПАВ рассчитывают, в соответствии с теорией Дебая—Хюккеля, по уравнению [35]  [c.113]

    Растворимость 8 не является термодинамической величиной, однако про-изведение растворимости —термодинамическая характеристика гетерогенного равновесня при условии, что используются надлежащие концепции активности (теория Дебая—Хюккеля, постоянная ионная сила и ъ д.). [c.202]

    АКТИВНОСТЬ. ТЕОРИЯ ДЕБАЯ - ХЮККЕЛЯ [c.13]

    Константа скорости реакции в присутствии любой концентрации нейтральной соли, активность которой можно вычислить на основании теории Дебая — Хюккеля (разд. 31.4), определяется уравнением (107). Логарифмированием (107) получим [c.185]

    Эффект среды в растворах можно определить термодинамически, если найти на опыте коэффициенты активности. Однако еще боль-щий интерес представляет вы1[исление эффектов среды и определение их влияния на свойства раствора по механизму процесса. Картину механизма процесса можно представить, используя уравнение Борна и теорию Дебая — Хюккеля. [c.372]

    В действительности, уравнение Борна сильно идеализировано при его выводе учитывалось только взаимодействие между ионом растворенного вещества и растворителем, и поэтому уравнение может быть верным только при очень малых концентрациях. Особенно важно это условие для растворителей с малыми диэлектрическими проницаемостями. В этом случае уравнение Борна можно улучшить путем учета взаимодействия ион — ион по теории Дебая — Хюккеля. Если в уравнение (10-15) вместо концен траций подставить активности, то получится [c.362]

    Экспериментальное определение коэффициентов активности всех участников равновесия ионной ассоциации в растворе не всегда возможно. Для оценки коэффициентов активности или их произведения эксперимент проводят при нескольких значениях ионной силы и выражают зависимость концентрационной константы равновесия от ионной силы чаще всего следующими формами уравнений теории Дебая— Хюккеля  [c.261]

    Если выразить различие в энергии заряженных и незаряженных частиц, с одной стороны, с помощью коэффициентов активности, а с другой стороны, на основании теории Дебая — Хюккеля, можно найти выражение для коэффициентов активности. [c.77]

    Выражение (17) выведено Ланжелье [3], исходя из допущения, что выражения для К и содержат концентрации (в моль/л), а не активности. Если — произведение растворимости, содержащее активности ионов, то где v — среднеионный коэффициент активности СаСОз. Для коэффициента активности Ланжелье с использованием теории Дебая—Хюккеля выведено выражение —Ig у = где ц — ионная сила, а г — валентность. Следова- [c.408]

    С помощью значений интеграла, приведенных в табл. 6, получают величину степени ассоциации р и затем находят истинную величину коэффициента активности у путем умножения величины Ук из теории Дебая—Хюккеля, эквивалентной у, на (1—р). [c.398]

    Практическая проверка теории Дебая — Хюккеля была предметом многочисленных экспериментальных работ, включая прецизионные измерения коэффициентов активности, теплот разбавления и т. д. Достаточно строгая проверка теории может быть сделана, естественно, лишь в области крайне разбавленных растворов, где можно ожидать соблюдения предельного закона. Проверка соотношений, вытекающих из второго приближения теории, в котором учитываются размеры ионов, осложняется тем, что собственно теория не дает способа вычисления параметра а, характеризующего этот размер. [c.162]


    Молярные коэффициенты активности / для малых концентраций могут быть вычислены по теории Дебая — Хюккеля, и таким об разом будет получено теоретически более правильное уравнение для вычисления растворимости. [c.362]

    Специальный интерес представляет применение теории Дебая — Хюккеля для расчета стандартных термодинамических характеристик реакций в растворе — констант равновесия, тепловых эффектов и т. д. при нулевой ионной силе по экспериментальным данным, относящимся к растворам с конечной ионной силой. При проведении такого рода расчетов получаются уравнения, в которые входит произведение или отношение коэффициентов активности отдельных ионов. Среди различных уравнений, используемых для оценки отношения коэффициентов активности, чаще всего применяются уравнение Дэвис (Vni.103) и уравнение с одним параметром типа (Vni.104). В таких случаях они обычно записываются как  [c.164]

    Безводные, а также смешанные растгорители нашли широкое применение для проверки теории Дебал — Хюккеля. Согласно этой теории, молярный коэффициент активности -электролита можно вычислить по уравнению [c.357]

    Многие исследователи теоретически рассчитали и другие термодинамические свойства растворов, исходя из электростатической теории Дебая — Хюккеля. Обычно расчетные и экспериментальные величины совпадают в тех областях концентраций, в которых имеется совпадение между подсчитанными и найденными коэффициентами активности, т. е. до 0,1 н. раствора в качестве верхней границы. В этих пределах все термодинамические функции могут быть вычислены на основании выражения для 1п 7. [c.89]

    Для полного исследования системы растворенное вещество — растворитель необходимо определить ряд электродных потенциалов для стандартных состояний. С практической стороны это представляет интерес для определения различных термодинамических величин, таких, как произведение растворимости, константы ионизации и коэффициенты активности. В теоретическом отношении электродные потенциалы в неводных растворителях имели большое значение в развитии теории Дебая — Хюккеля и других моделей процесса растворения. [c.372]

    Наипростейшей ион-молекулярной моделью Р. э. является ион-дипольная модель, в к-рой ионы рассматриваются как заряженные твердые сферы, а молекулы р-рителя моделируются твердыми сферами с дипольным моментом. Полученные выражения для термодинамич. ф-ций обобщают ур-ния, используемые в ионном подходе. В частности, в предельном случае малых концентраций выражения длд ионных коэф. активности включают члены, основанные на теории Дебая-Хюккеля, а выражения для энергии сольватации борновскую ф-лу (6) с эффективным радиусом иона в к-ром поправка 8, в явном виде зависит от диэлектрич. проницаемости р-рителя и соотношения размеров иона и молекулы. Выражение для диэлектрич. проницаемости удовлетворительно описывает эффект ее уменьшения при увеличении концентрации ионов. [c.192]

    Второе приближение можно получить, применяя теорию Дебая — Хюккеля для определения активности ионов г и /, и, наконец, третье приближение получают, используя для оценки коэффициентов активности ионной пары, модели, предложенные Кирквудо.м, а также Амисом и Жаффе (см. разд. 11). При этих условиях мы можем написать [c.453]

    Средние ионные коэффициенты активности вычисляют по теории Дебая — Хюккеля (см. разд. УП.7) для каждой ионной концентрации. Коэффициентом активности недиссоциированных частиц обычно пренебрегают. [c.453]

    Теория Дебая—Хюккеля оказалась очень полезной для объяснения свойств растворов электролитов. Она представляет собой предельный закон для малых концентраций в том же смысле, в каком закон идеальных газов является предельным законом для низких давлений. При больших значениях ионной силы коэффициент активности электролита обычно возрастает с увеличением ионной силы. Уравнение (6.30) превосходно согласуется с экспериментом при значениях ионной силы, меньших 0,01, но даже в этой области могут наблюдаться значительные расхождения теории и эксперимента, если произведение валентности иона соли с наибольшим зарядом и валентности иона электролита среды с противоположным знаком равно 4 или выше. Применения теории Дебая — Хюккеля рассматриваются в следующем разделе, а также в разд. 7.10. [c.192]

    Покажите, что эти данные находятся в согласии с теорией Дебая—Хюккеля, и вычислите средние коэффициенты активности ионов [Со (N113)6] и [Fe( N)6] для каждой приведенной концентрации. [c.113]

    Уравнение <1Х. 120) используют для нахождения среднего коэффициента активности НС1. Предварительно надо определить стандартную э.д.с. Е°. Так как — 1 при т->0, то наиболее простой путь определения Е° заключается в экстраполяции кривой зависимости E- -2b gm от - /т- Выбор - /т обусловлен тем, что по теории Дебая — Хюккеля в разбавленных растворах lgvm является линейной функцией VЕсли экспериментальные данные для Е ъ разбавленных растворах нанести на график как функцию - /т (рис. IX. 14) и продолжить полученную прямую до пересечения с ординатой (Vт = 0)> то отрезок на ординате будет равен согласно уравнению (IX. 120) которое при т = 0 дает Е = Е°. Когда значение Е° найдено, то у для любой концентрации соляной кислоты легко рассчитать по уравнению (IX. 120), подставив в него измеренное значение Е и концентрацию кислоты т. [c.550]

    Для того чтобы экстраполяция была близка к линейной, используют теорию Дебая—Хюккеля, которая дает явную зависимость коэффициента активности от концентрации. Для среднего ионного коэффициента активности 1,1-валентного электролита в разбавленных водных растворах при 25° С применяют выражение [c.193]

    Из рис. 3.1 можно шклю-чить, что, действительно, экс-периментальиая кривая III совпадает с кривой 1 первого приближения теории Дебая— Хюккеля только в достаточно узком интервале (1 < 10" моль/л). Кривая и второго приближения теории совпадает с экспериментальной кртой в более широком интервале концент]заций (Д < 10 моль/л). При повышенных концентрациях расхождения между рассчитанньши теоретически по уравнению (3.5) и найденными из экспериментальных данных значениями коэффициента активное ги иона возрастают. [c.64]

    Если растворы ПАВ разбавленные, коэффициенты активности могут быть вычислены по теории Дебая — Хюккеля. При концентрации ПАВ выше ККМ (критическая концентрация мицелообразова-ния) практически невозможно применить теорию Гиббса и обычно предполагают, что адсорбция в данном случае равна адсорбции ПАВ при концентрации ниже ККМ. Однако это не всегда правильно (Салиб и Китченер, 1964). [c.85]

    Описание термодинамических свойств ионов в растворах через активность и коэффициенты активности осушествляют в рамках теории Дебая—Хюккеля. В самом простом варианте теории будем считать все ионы точечными. [c.230]

    Характер концентрац. зависимости А. в-ва в том или ином р-ре определяется особенностями межмолекулярных взаимодействий в нем. Теоретич. расчет А. возможен методами статистич. термодинамики для практич. расчетов широко используют приближенные модели, напр., регулярного р-ра, атермич. р-ра, групповые модели (см. Растворы неэлектролитов). Для сильных электролитов А. в первом приближении описьшается теорией Дебая-Хюккеля (см. Растворы электролитов). Определение активностей и коэф. активности в-в важно при расчетах фазовых и хим. равновесий. Так, обшее условие фазового равновесия, заключающееся в равенстве хим. потенциалов данного компонента в каждой из фаз, отвечает условию равенства А. этого компонента, если они определены по отношению к одному и тому же стандартному состоянию. [c.76]

    Введение в коллоидные растворы индифферентных солей сопровождается двумя явлениями 1) ионным обменом между противоионами ДЭС и ионами добавленного электролита 2) сжатием диффузной атмосферы вокруг поверхности частиц. В качестве примера рассмотрим процессы, происходящие при добавлении раствора NaNOa к золю Agi с отрицательно заряженными частицами. В таком золе противоионами могут служить, например, катионы К . Между введенными ионами Na+ и противоионами ДЭС — катионами К" — происходит ионный обмен. Взаимодействие ионов и Na+ с ионами 1 , являющимися потенциалобразующими, примерно одинаково, поэтому их взаимный обмен подчиняется в основном закону действующих масс. Диффузный слой содержит смесь тех и других ионов. Однако здесь проявляется и другая сторона действия электролита. Добавка электролита приводит к повышению ионной силы раствора. Согласно теории Дебая—Хюккеля, с повышением ионной силы раствора уменьщается толщина ионной атмосферы и происходит сжатие диффузной части ДЭС. При этом некоторое число противоионов переходит из диффузного слоя в адсорбционный. Следствием такого распределения противоионов является снижение величины -потенциала (рис. 25.3, /), в то время как величина и знак ф-потенциала поверхности частиц остаются практически постоянными. Влияние электролитов усиливается, если в их составе имеются многозарядные ионы ( u" +, Са" +, АГ +, Th + ). Многозарядные катионы более активно взаимодействуют с отрицательными зарядами (в данном случае с ионами 1 ). Вследствие этого такие ионы вытесняют ионы К" " из Диффузного и адсорбционного слоев в раствор, становясь на их место. При этом падение -потенциала происходит быстрее, чем при действии однозарядных ионов (рис. 25.3,2). При добавлении электролитов с ионами, имеющими заряд 3, 4 и более, может происходить не только снижение -потенциала до нулевого значения, но и перемена знака заряда (рис. 25.3, [c.401]

    Электростатические представления, которые положены в рснову теории Дебая — Хюккеля, объясняют не только зависимость коэффициентов активности от концентрации, по и зависимость от концентрации любых свойств растворов (осмотического коэффициента, свободной энергии, теплосодержания, электропроводности, вязкости и т. д.). [c.87]

    Если элементарные объекты растворенного вещества имеют заряд, между ими существует значительное электростатическое взаимодействие, и только в сильно разбавленных растворах у и а=с. В других случаях значения коэффициентов активности ионов можно вычислить по формулам теории сильных электролитов (теория Дебая —Хюккеля). Экспериментальным путем, к сол<алению, проверить правильность вычисленных для отдельных ионов оэф- [c.34]

    Величина а представляет собой то предельное расстояние, на которое могут сблизиться разнозаряженные ионы в растворе и которое, очевидно, должно быть равно сумме их радиусов. Экспериментальная проверка второго приближения теории Дебая—Хюккеля затруднена тем, что величина а точно не известна. Чтобы проверить совпадение теории с опытом, можно, измерив коэффициенты активности, подсчитать а. [c.77]

    Для разл. прилолсепий важно иметь возможность предсказывать значения в многокомпонентном Р. э. В области весьма малых концентраций эти значения, в соответствии с теорией Дебая — Хюккеля, определяются ионной силой р-ра согласно правилу при данной ионной силе коэф. активности электролитов одинакового валентного типа имеют одно и то же значение. Более широкое применение имеет эмпирич. правило Харнеда, связывающее у в р-ре первого электролита и в присут. второго при одной и той же [c.495]

    С увеличением концентрации электролита возникает необходимость учитывать и некулоновскую часть межионного взаимод., для чего прибегают к нек-рым моделям. При этом наряду с индукционным, дисперсионным, обменным и др. видами межчастичных взаимод. некулоновский потенвдал учитывает сольватац. эффекты, связанные с влиянием р-ри-теля. В частности, учет некулоновской части взаимод. стабилизирует уменьшение коэф. активности иоиов с концентрацией и может объяснить их увеличение, наблюдаемое экспериментально. Наипростейшей ионной моделью Р. э. является модель заряженных твердых сфер (т. наз. примитивная модель). Первые попытки описания примитивной модели были выполнены в рамках теории Дебая - Хюккеля (второе приближение). Более корректно учет размера ионов и неку-лоновского взаимод. осуществляется на основе методов статистич. термодинамики (см. Жидкость). [c.192]


Смотреть страницы где упоминается термин Активность. Теория Дебая - Хюккеля: [c.256]    [c.192]   
Смотреть главы в:

Реакции кислот и оснований в аналитической химии -> Активность. Теория Дебая - Хюккеля




ПОИСК





Смотрите так же термины и статьи:

Активные теория

Дебай

Дебая Хюккеля

Дебая Хюккеля теория для коэффициента активности

Дебая теория

Коэффициенты активности отдельных ионов при 25 С в соответствии с теорией Дебая — Хюккеля

Основные понятия электростатической теории сильных электролитов Дебая и Хюккеля. Расчет коэффициентов активности

Хюккель

Хюккеля теория



© 2025 chem21.info Реклама на сайте