Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конструкции испарителей и их применение

    Обеспечение пленочного течения требует применения специальных устройств для распределения стекающей по поверхности нагрева жидкости в виде пленки, что усложняет конструкцию испарителя. Создание восходящего пленочного течения обусловливает необходимость применения аппаратов с длинными трубами 184 [c.184]


    Рассмотренная установка имеет очень высокие показатели тепловой и общей экономичности. Удельный расход теплоты здесь составляет 164 кДж/кг. Столь низкий расход теплоты связан прежде всего с тем, что в схеме применена 15-ступенчатая испарительная установка с испарителями кипящего типа при температурных напорах в каждом испарителе, равных примерно 4° С. Столь небольшие температурные перепады могли быть приняты потому, что здесь используются испарители с падающей пленкой, греющие секции которых изготовляются из профилированных с двух сторон труб из алюминиевой латуни, в связи с чем коэффициенты теплопередачи оказались сравнительно высокими [от 4800 до 8400 Вт/(м -К)]. При применении распространенных на электрических станциях конструкций испарителей с трубами из углеродистых сталей, коэффициенты теплопередачи на которых в рассматриваемых условиях невелики [до 1500 Вт/(м -К)], такое решение, очевидно, оказалось бы неэкономичным. Оптимальное число ступеней, определенное из технико-экономических расчетов, при этом окажется значительно ниже и удельный расход теплоты увеличится. Однако следует иметь в виду, что при равном числе ступеней на комбинированной установке удельный расход теплоты будет все же всегда ниже, чем на обычной, так как здесь осуществляется весьма экономичный многоступенчатый регенеративный подогрев воды, поступающей в испарители. [c.194]

    Спиральные теплообменники различных конструкций нашли применение для систем жидкость — жидкость, для систем жидкость — пар в качестве конденсаторов, нагревателей и испарителей, для охлаждения и нагревания паро-газовых смесей. Спиральные теплообменники специальной конструкции могут 262 [c.262]

    КОНСТРУКЦИИ ИСПАРИТЕЛЕЙ И ИХ ПРИМЕНЕНИЕ [c.49]

    Конструкции испарителей и их применение [c.51]

    Распределения были получены при испарении шариков из Сг — 510 методом вспышки [137]. Конструкция испарителя приведена на рис. 43. Испарение шариков происходит почти полностью с плоского дна ленты испарителя. Однако наличие боковых стенок, необходимых для предотвращения выброса испаряемого вещества, оказывает существенное влияние на форму распределения по толщине. Показано, что скорость подачи шариков (порядка 1 г/мин) мгновенно создает давление паров свыше 2 X X 10 1 мм рт. ст. Следовательно, могут оказаться существенными взаимодействие как со стенками, так и с самим возникшим паром. Сравнение кривых, приведенных на рис. 30, показывает, что использование отклоняющего экрана в виде конуса существенно уменьшает эффект направленности, поскольку в этом случае для паров испаряющегося вещества увеличивается диаметр отверстия. Абсолютные скорости испарения зависят от степени направленности пучка. Так например, применение цилиндрического экрана приводит к тому, что толщина осажденной пленки в центре подложки в 1,45 раза превосходит толщину, рассчитанную из уравнения (62), тогда [c.86]


    Однако для примененной конструкции испарителя-сепаратора дальнейшее повышение температуры оказалось невозможным. [c.148]

    Однако усложнение конструкции благодаря применению насоса значительно удорожает испаритель и увеличивает габариты. [c.394]

    Фреоновый оросительный испаритель (рис. 251) по сравнению с кожухотрубным имеет следующие достоинства увеличение коэффициента теплоотдачи со стороны стекающего тонкой пленкой кипящего рабочего тела, уменьшение веса заполняющего систему рабочего тела и отсутствие влияния столба жидкости. Однако усложнение конструкции благодаря применению насоса значительно удорожает испаритель и увеличивает его габариты. [c.481]

    На процесс накипеобразования оказывают влияние материал трубок испарителя, чистота обработки их поверхности, температура, скорость движения раствора и пр. В арсенал методов борьбы с накипью можно включить применение зернистых присадок, контактную стабилизацию, стабилизацию подкислением, применение антинакипинов, гидрофобное покрытие поверхности нагрева, умягчение исходного раствора, магнитную и ультразвуковую обработки, применение специальных конструкций аппаратов и др. [c.14]

    Проявляется тенденция к созданию стандартной аппаратуры для перегонки, в том числе циркуляционных испарителей и сборных конструкций из стеклянных приставок и кубов, выполненных из других материалов. Эта тенденция распространяется также и на автоматизированные пилотные установки непрерывного действия с электромагнитными делителями флегмы, регуляторами уровня и расхода (рис. 142). Применением различных вентилей из стекла можно значительно упростить обслуживание подобных установок. Такие вентили подробно описаны в разд. 7.2.1. [c.213]

    В препаративных газовых хроматографах, как и в аналитических, используется проявительный способ разделения. Но они существенно отличаются от аналитических по характеру, конструкции и назначению отдельных узлов. Прежде всего отличие состоит в применении хроматографических колонок намного большего диаметра. Для быстрого испарения больших количеств жидкой пробы ее вводят в дозатор-испаритель в распыленном виде с помощью специальной форсунки. [c.279]

    Особые трудности вызывает отделение загрязнений, растворенных в парах или жидкостях. В этом случае часто применяется испаритель, который при анализе парообразных проб подключается после конденсатора. При применении такого испарителя следует следить за тем, чтобы не происходила дистилляция, приводящая к искажению состава продукта. Твердые и высококипящие жидкие загрязнения непрерывно отводятся из потока. Конструкция такого испарителя представлена на рис. 2. [c.366]

    Следует отметить, что описанный аппарат был изготовлен ремонтно-механическим цехом химического комбината, без применение специального оборудования, необходимого при изготовлении и балансировке роторов испарителей других конструкций. По результатам длительной эксплуатации испарителя можно сделать следующие выводы [c.200]

    Непрерывная циркуляция маслофреоновой смеси и возврат масла в картер холодильной машины достигаются применением испарителей специальной конструкции, созданием условий, способствующих уменьшению растворения фреона в масле в картере компрессора. [c.60]

    Роторно-пленочные испарители, несмотря на сложность конструкции и сравнительно высокую стоимость, успешно конкурируют с отгонными аппаратами других типов. Они могут применяться в производстве пластификаторов для отгонки фенолов, крезолов и, т. п. от фосфорсодержащих пластификаторов, т. е. в тех случаях, когда применение острого пара для отгонки летучих веществ не [c.62]

    Особенно важно обеспечить равномерное начальное орошение большого числа теплообменных труб испарителя с падающей пленкой (рис. 4.5, а). Это достигается применением распределителей, например трубчатых вставок с вертикальными прорезями, обеспечивающими поступление орошения при колебаниях расхода и уровня жидкости. В обеих конструкциях талловое масло стекает по внутренней поверхности греющей стенки и испаряется из тонкой пленки. Благодаря отсутствию столба жидкости и гидростатической депрессии, температура кипения практически соответствует давлению того аппарата, в который направляется паровая фаза (имеет место только гидравлическая депрессия). [c.120]

    Применение пленочных или роторных испарителей и эффективных ректификационных колонн с улучшенной конструкцией тарелок позволяет проводить ректификацию при более низкой температуре и получать продукт более высокого качества. Для устранения неприятного запаха и повышения термической стойкости ди- и триэтиленгликоля смесь гликолей, от которой предварительно отогнан этиленгликоль, перегоняется при пониженном давлении. К полученному дистилляту добавляется 5— 0% воды и на следующей колонне при пониженном давлении и температуре в кубе не выше 190 °С из него отгоняются примеси. Кубовая жидкость последней колонны подвергается ректификации в вакууме при температуре не выше 190—200 °С. Подученный диэтиленгликоль не имеет неприятного запаха, его цветность равна 5, она не изменяется при нагревании с соляной кислотой при 200 °С. При разделении смеси гликолей без добавки воды цветность диэтиленгликоля равна 15 и достигает 200 при нагревании в течение 2 ч с соляной кислотой при 200 "С [37]. [c.136]


    Наибольшее распространение теплообменники пластинчатого типа получили в пищевой промышленности вследствие относительной простоты разборки и легкости очистки и дезинфекции теплообменных поверхностей. Пластины могут изготавливаться из нержавеющей стали, титана, никеля или других металлов или сплавов, необходимых для конкретных химически активных теплоносителей. В качестве материала прокладок между соседними пластинами используются силикон или фторуглерод, резины и асбест. Герметичность многочисленных соединений пластин в разборных пластинчатых аппаратах представляет известную проблему, поэтому здесь вероятно некоторое взаимное проникновение теплоносителей. В герметичных сварных пластинчатых аппаратах исчезает возможность осмотра и очистки теплообменных поверхностей. Впрочем, турбулизация потоков внутри волнистых щелевых каналов более чем в два раза замедляет отложение зафязнений по сравнению с ТА кожухотрубчатого типа. Пластинчатые ТА используются, как правило, для теплообмена между теплоносителями, не изменяющими своего фазового состояния (чаще — для капельных жидкостей), но в некоторых случаях они находят применение и в качестве конденсаторов или даже испарителей, например при выпаривании небольших количеств высоковязких растворов. Существует до 60 конфигураций пластин, изготовление которых не является легкой механической операцией, особенно для пластин крупных размеров. Поэтому пластинчатые ТА обычно имеют относительно скромные габариты или собираются из наборов пластин, размеры которых не превышают одного метра. Комбинированием пластинчатых ТА сравнительно просто организуются системы противотока теплоносителей или теплообмен между тремя или более теплоносителями (рис. 6.2.5.9). Расчеты пластинчатых ТА проводятся по корреляционным соотношениям, получаемым в соответствующих опытах [1, 50, 51]. Подробные данные о конструкциях существующих пластинчатых аппаратов приводятся в [43, 44]. [c.355]

    В книге изложены способы осуществления идеи турбулизации жидкостной пленки, стекающей по вертикальной поверхности, посредством струй п капель жидкости, сбрасываемых с вращающегося ротора под действием центробежных сил. Это привело к созданию роторно-пленочного испарителя с гофрированным ротором. Аппараты данной конструкции успешно внедрены на действующем производстве капролактама ведется проектирование новых высокопроизводительных линий очистки капролактама, а также технологических линий производства 1,10-декандикарбоновой кислоты и додекалактама. Предполагается их применение в промышленности синтетического каучука. Исследованы перспективы применения такого аппарата для проведения теплообменных процессов, не сопровождающихся изменением агрегатного состояния вещества, а именно в качестве реактора для проведения быстропротекающих экзотермических реакций. [c.9]

    Фирма Vul an Manufa turing o. выпустила конструкцию испарителя с падающей пленкой, обеспечивающую стекание тонкого турбули-зированного слоя жидкости по всей поверхности аппарата без применения перемешивающих устройств, требующих высокой точности при из-гстовлении и монтаже. Для улучшения теплопередачи и устранения возможности стекания жидкости локальными потоками (что приводит к местным перегревам) в новом аппарате жидкостная пленка по мере стекании вниз через небольшие интервалы повторно распределяется по стенке с помощью центробежного устройства [143]. [c.125]

    Интенсивность теплообмена в испарителях с принудительной циркуляцией увеличивают, повышая скорость движения воды с помощью насоса. В описанных в литературе адиабатных испарителях с мгновенным вскипание нагретая соленая вода насосом вбрызгивается в камеру и там испаряется. Давление в камере ниже, чем давление насыщения пара при температуре-поступающей воды. Гигроскопические испарители работают при атмосферном давлении, и пар, образующийся при вскипании разбрызгиваемой насосом> воды, переносится в конденсатор потоком циркулирующего в системе воздуха. В термодиффузионных испарителях на горизонтальной оси укреплены диски из материалов с высокой теплопроводностью. Они вращаются со скоростью 50—60 об/мин, проходя в нижней части испарителя через нагретую испаряемую воду, а в верхней — между плоскими охлаждаемыми изнутри конденсаторами. Пар, конденсируясь на их поверхности, отдает тепло циркулирующей в системе соленой воде. Применение в соответствующих конструкциях испарителей для передачи тепла гидрофобных теплоносителей (парафина, минеральных масел и др.) позволяет осуществлять глубокое упаривание соленой воды без затруднений, вызываемых накипеобразованием. [c.677]

    Наиболее распространенной конструкцией молекулярных перегонных аппаратов является конструкция с применением испарителя и конденсатора цилиндрической формы при концентрическом их взаимном расположении. Испарителем обычно служит внутренний цилиндр, причем вещеспво подают непрерывно на его верхний конец и его заставляют стекать по вертикально расположенной поверхности в виде топкой пленки, (принцип падающей пленки ). Таковы, например, приборы, предложенные Hi kman [1], Taylor [2] и другими. [c.87]

    При применении метода вспышки большое значение имеет выбор материала и конструкции испарителя. Испаритель должен работать при температурах порядка 2000° С без испарения самого вещества испарителя и несильно реагировать с испаряемым веществом. Для этих целей используют плоские ленты тугоплавких металлов, нагреваемые электронной бомбардировкой. При этом испаряемое вещество подается в виде проволоки [114, 257]. Вильсон и Терри [264] испаряли порошки методом вспышки с вольфрамового диска, нагреваемого электронной бомбардировкой. Наиболее общим методом является, однако, испарение из прямовакальных испарителей из тугоплавких металлов. Простейшим испарителем является плоская вольфрамовая лента толщиной 125 мкм, которую можно легко изготовить и заменить для нового эксперимента. Последнее соображение является немаловажным, поскольку вольфрам сплавляется с большинством из веществ, приведенных в табл. 15, и время жизни испарителя ограничено. В случае — соединений, для которых требуются более низкие [c.131]

    При изготовлении деталей машин в химическом машиностроении наиболее трудоемкий и сложный процесс — обработка отверстий. Этот процесс, как правило, включает три характерные операции сверление, развертывание и нарезание резьбы. Усовершенствование каждой из этих операций имеет свои особенности доработки конструкции режущего инструмента или кинематики процесса резания. Одной из наиболте массовых операций является сверление отверстий в трубных решетках теплообменников, конденсаторов и испарителей. Применение труднообрабатываемых материалов делает эту операцию неустойчивой, вызывает быстрый износ инструмента. Например, при сверлении в трубных решетках толщиной 40 мм из коррозионностойкой стали 12Х18Н10Т отверстий диаметром 25,5 мм стандартными спиральными сверлами из быстрорежущей стали Р6М5 стойкость инструмента составляет в среднем два-три десятка отверстий, что не позволяет осуществить автоматизацию сверлильных операций и роботизацию изготовления трубных решеток. [c.68]

    Введением меловой затравки и применением специальной конструкции испарителей с вынесенной зоной кипения достигается возможность работы дистилляционных установок без выпадения карбонатной накипи. Отложения сульфатной накипи предотвра- [c.160]

    Если количественный перенос вещества не является необходимым, тонкие однородные образцы можно приготовить одним из методов, описанных в разделе, посвященном способам приготовления мишеней напылением в вакууме, электроосаждением, методами электрофореза или электрораспыления [1, 2, 26]. Напыление путем испарения с накаленной проволоки можно использовать для прдготовления образцов из большинства элементов. В некоторых случаях процесс можно проводить даже на воздухе например, при нагревании таких летучих элементов, как полоний или астатин, их можно сконденсировать непосредственно на подложке, расположенной над нагреваемым объектом. В большинстве случаев используют простые вакуумные установки. Применение установок с хорошо продуманной конструкцией испарителя и приемника позволяет производить перенос радиоактивного вещества преимущественно в заданном направлении и, таким образом, избежать потерь. Конденсацию вещества можно проводить даже на тонкой полимерной пленке, если в условиях напыления она не разрушается теплом, исходящим от накаленной проволоки. При использовании метода напыления желательно сначала нагреть проволоку до температуры несколько более низкой, чем необходимая для испарения наносимого материала. Таким образом избавляются от летучих примесей и только после этого помещают подложку образца в нужное положение и доводят температуру до необходимого уровня. Специальные методы получения тонких радиоактивных препаратов разработаны для тех случаев, когда соответствующий изотоп образуется в ходе радиоактивных превращений, в особенности при а-распаде. В этом случае энергию отдачи ядра, образующегося приа-распаде, используют для отделения дочернего продукта от исходного вещества и для его переноса на расположенную рядом пластину-коллектор. Аналогично энергию отдачи можно использовать для перенесения продуктов ядерной реакции из тонкой мишени на фольгу-коллектор, расположенную по ходу пучка, выходящего из облучаемой мишени. Такого рода методы особенно широко используются при исследовании короткоживущих изотопов трансурановых элементов, образующихся при облучениях на ускорителе. [c.411]

    Лабораторные и промышленные испарители с вращающимся кубом, применяющиеся в различных ректификационных установках, стандартизированы. Их применяют как в пилотных дистилляционных установках, так и в лабораторных приборах, предназначенных для микроперегонки. Данные испарители имеют вращающийся куб в виде трубы с шаровым расширением (см. разд. 5.1.1) или круглодонной колбьг емкость которых может изменяться в интервале от 1 мл до 100 л. Наряду с дегазацией масел и смол испарители с вращающимся кубом используют для отделения растворителей и пенящихся веществ в мягких температурных условиях. На рис. 203 показана принципиальная схема данного испарителя. Конструкции таких испарителей и области их применения подробно рассмотрены Эгли [138]. Частота вращения колбы может ступенчато изменяться и регулироваться в интервале от 10 до 220 об/мин. Для удобства эксплуатации установка снабжена механическими и автоматическими [c.279]

    В работе [Kletz,1984] обсуждается вопрос о выборе подходящего оборудования с точки зрения возможного сокращения объемов и числа перерабатываемых веществ. Примером в данном случае может служить конструкция ректификационной колонны. Автор высказывается за применение колонн с меньшим объемом испарителя с целью уменьшения остатка жидкости в нем. В работе сделан вывод о том, что один завод в целом менее опасен, чем два завода половинной мощности. [c.522]

    Кожухотрубные теплообменники появились в начале XX века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели питательной 1юды, работающие при относительно высоком давлении. Кожухотрубные теи-лообменники применяются в качестве конденсаторов и подогревателей, и в настоящее время конструкция их в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной, В те же годы началось широкое промышленное применение кожухотрубных теплообменников в нефтяной промышлепности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти н сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями прн высоких температурах н давлениях, и поэтому их необходимо было копструирор.ать так, чтобы обеспечивалась легкость ремонта и очисчкп, [c.22]

    Для достижения заданного фракционного состава сырья требуется совершенствование работы атмосферно-вакуумных установок перегонки мазута, в частности, применение технологии беспаровой перегонки с вакуумными стриппингами и вакуумным испарителем на потоке мазута [157, 166]. При этом необходимо использование эффективных конструкций ректификационных тарелок с низкими перепадами давления или насадок, увеличения кратности орошения, углубления вакуума (т. е. остаточное давление наверху вакуумной колонны должно составлять 30-65 гПа вместо 55-200 гПа, характерных для установок АВТ, освоенных в России до 1975 г.). Одновременно обеспечивается утяжеление вакуумного дистиллята и по концу кипения 540-560°С вместо достигнутого ранее уровня 480-500°С. [c.118]

    Наиболее широкое применение на практике находят колонны с нижним кубом, играющим одновременно и роль кипятильника (см. рис. 11). Колонны такой конструкции особенно удобны в случае, когда примесь является высококипящим компонентом в ходе процесса продукт отбирается в виде дистиллята, я примесь концентрируется в кубовом остатке. В принципе эти колонны могут быть использованы и в случае, когда примесью является низкокипящий компонент продуктом при этом будет кубовый остаток. Но здесь имеет место большая вероятность загрязнения продукта за счет его взаимодействия с материалом аппаратуры (куба) или вследствие протекания химических лревращений, более характерных для высоких температур (температура кипения), при которых в течение всего процесса находится очищаемое вещество. Указанные причины возможного загрязнения в значительной мере устранены в конструкциях колонн с верхним кубом — питающим резервуаром, расположенным в верху колонны непосредственно за конденсатором или совмещенным с ним. В таких колоннах, которые называют колоннами с обратным питанием, отбор продукта (или К01Н-центрата примеси) производится из зоны обращения фаз, играющей при этом роль испарителя (куб полного испарения). [c.82]

    Применение. Г. используют в металлургии для изготовления плавильных тиглей и лодочек, труб, испарителей, кристаллизаторов, футеровочных плит, чехлов для термопар, в кач-ве противопригарной присыпки и смазки литейных форм. Он также служит для изготовления электродов и нагревательных элементов электрич. печей, скользящих контактов для электрич. машин, анодов и сеток в ртутных выпрямителях, самосмазывающихся подшипников и колец электромашин (в виде смеси с А1, Mg и РЬ под назв. гра-фаллой ), вкладышей для подшипников скольжения, втулок для поршневых штоков, уплотнительных колец для насосов и компрессоров, как смазка для нагретых частей машин и установок. Его используют в атомной технике в виде блоков, втулок, колец в реакторах, как замедлитель тепловых нейтронов и конструкц. материал (для этих целей применяют чистый Г. с содержанием примесей не более 10" % по массе), в ракетной технике-для изготовления сопел ракетных двигателей, деталей внеш. и внутр. теплозащиты и др., в хим. машиностроении-для изготовления теплообменников, трубопроводов, запорной арматуры, деталей центробежных насосов и др. для работы с активными средами. Г. используют также как наполнитель пластмасс (см. Графитопласты), компонент составов для изготовления стержней для карандашей, при получении алмазов. Пирографит наносится в виде покрытия на частицы ядерного топлива. См. также Углеграфитовые материалы. [c.608]

    Необходимо сводить к минимуму соприкосновение масел с воздухом хранить масла следует в герметичном контейнере. Полиэфирные масла не смешиваются с минеральными, поэтому при ретрофите оборудования (работающего на К12 и минеральном масле) с использованием К134а и полиэфирного масла в целях достижения эквивалентной смешиваемости остатки минерального масла должны составлять не более 5 % общего количества смазки, введенной в систему. Это требование делает необходимым включение в процедуру ретрофита многократной промывки системы, чего не приходится делать при использовании сервисных смесей среднего давления и алкилбензольного масла. Допустимое остаточное содержание минерального масла в значительной степени зависит от конструкции системы и условий эксплуатации. Если в холодильном оборудовании наблюдаются признаки низкой теплоотдачи в испарителе или недостаточного возврата масла в компрессор, то может возникнуть необходимость в дальнейшем уменьшении остаточного содержания минерального масла. Серия последовательных промывок с применением сложных эфиров может, как правило, снизить концентрацию минерального масла до низких уровней. [c.69]

    Для осаждения серебра и меди лучше изготовлять испарители из молибдена, а не из вольфрама, так как последний хуже смачивается серебром н медью. При осаладении летучих металлов, таких как цинк, кадмий и т. п., применение обычных открытых испарителей не дает хороших результатов, так как пары распыляются по всей камере, В таких случаях применяют направленные испарители с небольшим отверстием для выхода паров. В испарителях такой конструкции давление паров металла в процессе испарения повышается, вследствие чего пары выделяются с большей кинетической энергией, чем в открытых испарителях. [c.78]


Смотреть страницы где упоминается термин Конструкции испарителей и их применение: [c.108]    [c.73]    [c.171]    [c.143]   
Смотреть главы в:

Технология тонких пленок Часть 1 -> Конструкции испарителей и их применение




ПОИСК





Смотрите так же термины и статьи:

Испаритель



© 2025 chem21.info Реклама на сайте