Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия реакций синтеза из промышленных газов

    Имеющиеся в литературе данные по равновесию реакций синтеза метанола выполнены для условий, отвечающих промышленному процессу на цинк-хромовом [36] и медьсодержащих низкотемпературных [34, 37] катализаторах. Исследовано влияние состава газа, температуры и давления на равновесный выход метанола и воды. [c.45]

    РАВНОВЕСИЯ РЕАКЦИЙ СИНТЕЗА ИЗ ПРОМЫШЛЕННЫХ ГАЗОВ [c.84]


    Описанное влияние давления на равновесный состав также является иллюстрацией проявления более общего принципа Ле-Шателье— Брауна (V.10). Так, увеличение давления в системе, содержащей равновесную смесь азота, водорода и аммиака, вызовет процесс, связанный с уменьшением объема, т. е. общего числа молей газов, иначе говоря, сдвинет равновесие реакции (V.153) слева направо. Именно по этой причине синтез аммиака в промышленности проводят при высоких давлениях, достигающих 1000 атм. [c.142]

    Промышленные установки синтеза аммиака работают с использованием принципа циркуляции после реакции смесь газов охлаждается, содержащийся в ней аммиак конденсируется и отделяется, а непрореагировавшие азот и водород смешиваются со свежей порцией газов, снова подаются на катализатор и т. д. Удаление аммиака из реакционной смеси сдвигает равновесие реакции вправо. [c.197]

    Видно, что и в этом случае х растет при увеличении давления. Поэтому в промышленности реакцию синтеза аммиака проводят при высоких давлениях. Тогда газы сильно отличаются от идеальных, вместо давлений приходится пользоваться летучестями и константа равновесия запишется в виде  [c.175]

    Реакция экзотермична и происходит с уменьшением числа газообразных молекул. В соответствии с принципом Ле Шателье протеканию прямой реакции способствуют низкая температура и высокое давление. При низкой температуре скорость достижения равновесия слишком мала, а при высокой температуре равновесие сдвинуто влево. Поэтому используют оптимальные значения температуры и применяют катализатор для увеличения скорости реакции. Условия промышленного синтеза аммиака следующие давление 200—1000 атм, 500 °С и в качестве катализатора — железо, активированное оксидом алюминия. Выход составляет ж 10% непрореагировавшие газы возвращаются в установку (рис. 22.3). [c.465]

    Широкое распространение в промышленной практике получил способ получения газа для синтеза метанола путем паровой конверсии природного газа в трубчатых печах с добавлением диоксида углерода. Как и в случае применения кислорода состав конвертированного газа определяется равновесием реакции 1.7. Степень превращения метана при такой конверсии уменьшается с повышением давления и понижением температуры [c.17]

    Реакция синтеза обратима и протекает с уменьшением объема и с выделением тепла. Согласно принципу Ле Шателье, повышение давления и отвод выделяющегося тепла смещают равновесие реакции в сторону образования аммиака. В промышленных условиях синтез аммиака проводят при температуре около 500° С и давлении 300 ат. В этих условиях равновесная концентрация аммиака может достигать лишь 26%. Для полного превращения азото-водородной смеси в аммиак применяют многократную циркуляцию газовой смеси через колонну синтеза. С целью ускорения реакции используется железный катализатор. Газовая смесь (циркулирующая и свежая) поступает в колонну синтеза с определенной объемной скоростью, под которой понимают количество газа (в м ), пропускаемого через 1 катализатора в 1 ч. Чем выше объемная скорость газа, тем меньше содержание аммиака в газовой смеси (при одинаковых давлении и температуре)  [c.145]


    В промышленных условиях синтез метанола идет в присутствии инертных к данному процессу газов (азота, аргона, метана) и двуокиси углерода. Инертные газы, как известно, снижают эффективное давление реагирующих компонентов при синтезе, но не оказывают влияния на равновесие реакции образования метанола. Дву- [c.23]

    Высокой скорости реакции благоприятствуют высокие температуры и давление, но высокая температура означает более низкое значение равновесной концентрации аммиака и, следовательно, меньшую движущую силу . Поэтому скорость реакции возрастает с увеличением температуры, но достигает максимального значения и затем падает, поскольку приближается к равновесию. Вследствие этого оптимальный выход при заданном давлении получается в виде профиля, падающего вдоль слоя катализатора при возрастании температуры и содержания аммиака. В промышленных условиях максимальная скорость реакции получается при температуре на 70° С ниже равновесной. Таким образом, уравнение, описывающее скорость синтеза аммиака, должно учитывать температуру, давление, состав газа и равновесный состав. [c.167]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]

    Перечисленные выше газы используются в качестве топлива и исходного сырья химической промышленности. Они важны, например, как один из источников получения азото-водородной смеси для синтеза аммиака. При пропускании их совместно с водяным паром над нагретым до 500 °С катализатором (главным образом РеаОз) происходит взаимодействие по обратимой реакции НаО -)- СО СОа + Нг + Ю ккал, равновесие которой сильно смещено вправо. Образовавшийся углекислый газ удаляют затем промыванием смеси водой (под давлением), а остаток СО —аммиачным раствором солей меди. В результате остаются почти чистые азот н водород. Соответственно регулируя относительные количества генераторного н водяного газов, можно получать N3 и На в требуемом объемном соотношении. Перед подачей в колонну синтеза газовую смесь подвергают сушке и очистке от отравляющих катализатор примесей. [c.513]

    Снижение производительности при любом размере зерна катализатора при температурах выше точки максимума производительности чаш,е всего объясняют увеличением скорости побочных реакций (изменением селективности процесса), а не приближением к равновесию. Действительно,, степень приближения к равновесию в лучшем случае достигает 36%, а при 380°С— 27% (рнс. 3.3 размер зерна 0,5—1,0 мм, давление 34,5 МПа, соотношение Нг СО = 2,2—2,3, объемная скорость газа 40-10 ч >)-Именно вследствие низкой степени превращения исходных компонентов промышленный синтез метанола проводят по непрерывной циклической схеме после выделения метанола в конденсаторах давление газа доводят до рабочего и вновь подают его в колонну — смешивают с исходным газом, поступающим из отделения конверсии. Ведение процесса при температуре выше 400 °С становится опасным, так как в результате реакций мета-нирования, сопровождаемых интенсивным выделением тепла [c.74]

    Количество тех или иных побочных соединений в продукционной смеси зависит не только от температуры и давления, но и от состава исходной газовой смеси, селективности и состояния катализатора. Наиболее существенной примесью, как правило, является метан. По сравнению со всеми побочными процессами (а)—(ж) получение метилового спирта идет с максимальным уменьшением объема, поэтому в соответствии с принципом Ле-Шателье повышение давления сдвигает равновесие в сторону образования метилового спирта. Так как процесс экзотермичен, то при повышении температуры равновесие сдвигается влево и равновесная степень превращения синтез-газа в метиловый спирт уменьшается. В то же время при недостаточно высоких температурах скорость процесса чрезвычайно мала. Поэтому в промышленности процесс ведут в узком интервале температур с колебаниями в 20—30° С. Константа равновесия основной реакции [c.186]


    Неполное горение метана в кислороде используется в современной химической промышленности не только для производства синтез-газа — на начальной стадии горения образуется также ацетилен. Высокотемпературная конверсия и термоокислительный пиролиз метана отличаются в основном только временем пребывания продуктов в зоне реакции. Если при конверсии природного газа состояние термодинамического равновесия почти полностью достигается в течение 2 сек, то продолжительность процесса пиролиза составляет несколько тысячных долей секунды, причем образующийся ацетилен является термодинамически неустойчивым соединением. Таким образом, термоокислительный пиролиз можно рассматривать как промежуточную стадию высокотемпературной конверсии метана. [c.242]

    Для синтеза аммиака в промышленности используют два газа, исходные концентрации которых были по 4 моль/л. Рассчитайте константу равновесия реакции (Т = onst), если равновесная концентрация аммиака составляет 2 моль/л. Какие условия способствуют увеличению выхода продукта в этом процессе Почему на практике процесс ведут при Г>650 К  [c.233]

    Естественны давние стремления ученых получить дешевое сырье для азотной промышленности. Начиная с XVIII в., предпринималось множество попыток синтезировать аммиак из азота и водорода. Смесь газов нагревали при разной температуре, подвергали высокому давлению, но практически получить аммиак не удавалось. В конце прошлого века Рамзай и Юнг заметили, что при пропускании над железом нри 800° аммиак не полностью разлагается на азот и водород. Попытка провести реакцию в обратном направлении — синтезировать аммиак из этих элементов — не увенчалась успехом. Однако французскому ученому Ле-Шателье на основе законов термодинамики удалось сформулировать условия синтеза аммиака. Он установил, что при повышении температуры равновесие реакции [c.112]

    Оптимальное содержание оксида хрома в этих контактах составляет 20—30%. Наличие в катализаторе трудновосстанав-ливаемого оксида хрома препятствует спеканию оксида цинка и образованию шпинели, в результате чего активность и селективность катализаторов длительное время остаются на высоком уровне. При отношении Нг к СО в циркуляционном газе более 6 и объемной скорости порядка 25 000ч активность цинк-хромовых катализаторов в течение года заметно не снижается. Тепловой эффект реакции синтеза метанола увеличивается с повышением давления. Влияние температуры наиболее заметно в интервале давлений 10—30 МПа. В промышленных условиях синтез метанола протекает в присутствии газов (Ыг, Аг, СН4, СОг), которые снижают эффективное давление реагирующих компонентов, но не оказывают влияния на равновесие реакции образования метанола. [c.308]

    Аммиак М1з образуется при взаимодействии ЗН2 + N3, однако кинетические исследования наряду с данными, полученными на промышленных установках, показывают, что скорость получения аммиака можно увеличить, если синтез-газ содержит несколько больше N2, например имеет состав 2,5 НзгКз /6/. Смесь азота и водорода пропускают над специально приготовленным железным катализатором со скоростью 10 000-55 ОООГрИ ( ч , поддерживая температуру 450-520°С и давление 140-1000 атм. Реакция экзотермична, и внутри реактора помещают теплообменник так, чтобы теплоту реакции можно было использовать для предварительного нагрева исходных газов. Холодные входяшие газы сначала проходят вдоль внутренней стенки работающего под давлением реактора, охлаждая их, и лишь затем попадают на катализатор, находящийся внутри реактора под давлением. Реакция является равновесной, и реагенты достигают равновесия только перед выходом из реактора. Конверсия за проход составляет 50-80% от равновесной. Отходящие газы охлаждаются, жидкий аммиак отделяется, а непрореагировавшие газы возвращаются в цикл. Газ всегда содержит некоторое количество метана, аргона и других инертных примесей, поэтому прежде чем газ возвращается в цикл, часть его стравливается. Скорость образования аммиака составляет около 30 кг на 1 л катализатора в сутки. [c.225]

    Равновесие N2 (г) + ЗН2 (г) ч=ь2МНз (г) + 22,08 ктл при повышении температуры смещается влево, при понижении — вправо. Повышение давления благоприятствует образованию веществ, занимающих в данных условиях меньший объем. Понижение давления действует в противоположном направлении. Поэтому увеличение давления при синтезе аммиака сдвигает равновесие вправо, так как при образовании ЫНз число молекул газа уменьшается вдвое, что уменьшает объем системы. Понижение давления способствует разложению аммиака. Синтез ЫНз возможен в стандартных условиях, так как А = —3,98 ккал/моль. Но при такой температуре процесс очень замедлен. Повышение температуры ускоряет процесс, но сдвигает равновесие влево уже при 600—700 С и при 1 атм он становится в прямом направлении невозможным. Повышение давления до нескольких сот атмосфер делает эту реакцию возможной при указанной температуре, чем и пользуются в промышленном синтезе аммиака, вводя еще катализаторы для ускорения процесса. [c.30]

    Единственным промышленным процессом получения синтез-газа, основанным на парциальном окислении метана кислородом, является процесс, реализуемый на заводе по получению ДТ фирмы Шелл в Малайзии. Схема процесса приведена на рис. 7.77. Это некаталитический гомогенный процесс. Реакция протекает при температуре 1100-1300 °С до достижения термодинамического равновесия. После очистки от НгЗ и СО2 синтез-газ состава Н2 СО = 2 1 поступает на синтез углеводородов по методу Фишера — Тропша, который протекает вплоть до образования высокомолекулярных воскообразных углеводородов. Затем на цеолитных катали- [c.592]

    Для иллюстрации характера перечисленных работ воспроизведем краткое содержание некоторых из них. В [6480] осуществлен термодинамический анализ реакции взаимодействия паров плавиковой кислоты с углеродом. В [6500] дано определение оптимальной температуры реакции между раствором и газом при повышенном давлении на примере процесса восстановления хромита натрия водородом при 100—350° С. В (6575] рассмотрена возможность изучения термодинамики окислов методом измерения э. д. с. гальванических ячеек с твердым электролитом, а в [66901 — фазо ые равновесия при диссоциации твердых растворов ортотитанатов с ферритами и особенности их термодинамического анализа. Теория хлорного метода в промышленности редких и цветных металлов изложена в (6778]. Граничные условия синтеза алмаза в системе металл — углерод (с учетом образования твердых растворов) освещены в 6868]. Авторы работы [6943] уточнили диаграмму сродства элементов к кислороду, применив ее к исследованию восстановительных процессов в доменной печи. В [6973] дан расчет реакций изотопного обмена между НгОиНгЗ [c.59]

    Нг СО = 2,2—2,3). Снижение производительности при любом зернении при температурах выше точки максимума производительности чащ,е всего объясняют увеличением скорости побочных реакций (изменением селективности процесса), а не приближением к равновесию. Действительно, степень приближения к равновесию в луч-JПeм случае достигает 36%, а при 380°С - 27% (рис. 11). Именно вследствие низкой степени преврашения исходных компонентов промышленный синтез метанола проводят по непрерывной циклической схеме газы после выделения метанола в конденсаторах дожимают до рабочего давления и вновь подают на вход в колонну, где [c.50]

    Здесь (1) — наблюдаемая скорость реакции, равная разности скоростей образования и разложения А. if, и —константы скорости образования и разложения А. Pj , Pjj и NHj — парциальные давления газов, а — постоянная. Для обычного промышленного KaTajui3aTopa а = 0,5, При равновесии И) = О, следовательно К,/К2 = К, где К — константа равновесия синтеза аммиака. А, и при высоких давлениях несколько изменяются с давлением, вследствие отклонений от законов идеальных газов и других причин. Теоретический вывод уравнения основан на представлении, что стацией реакции, определяющей скорость образования А., является а1 тивнрован-иая адсорбция азота. Зависимость выхода А. от объемной (спорости, выражаемой в lui газовой смеси, проходящей через 1 катализаторной массы в час, при различных давлениях, показана на диаграмме (рис, 2). При повышении объемной скорости растет производительность катализатора, выражаемая в кг NH , на [c.101]

    Бертло [1] получил некоторое количество ацетилена при помощи вольтовой дуги, пропущенной между двумя угольными электродами в атмосфере водорода. Дьюар [2] приписывал эту реакцию исключительно достигнутой здесь высокой температуре. Г авновесие углерода и водорода с ацетиленом изучалось рядом исследователей [3—7, 9— 11]. В равновесных смесях, исходящих как из ацетилена, так и из элементов, при температуре от 1000° до 1700° присутствуют весьма малые количества ацетилена выше 1700° содержание ацетилена возрастает с повышением температуры, вплоть до того момента, когда наступает изменение условий равновесия вследствие появления атомарного водорода. Фрост [12] сообщает, что значительные выходы ацетилена можно получить только в пределах 3100—3200°. Непрерывное образование ацетилена при таких высоких температурах зависит отчасти от стремления сложных углеродных структур расщепляться при этих условиях, предпочтительнее, на группы С , нежели на какие-либо другие части. Содержание ацетилена в момент получения его с помощью вольтовой дуги в атмосфере водорода достигает примерно семи-аосьми процентов. Вследствие того, что термическое разложение углеводородов дает газ с более высокой концентрацией ацетилена, синтез его из элементов для промышленных целей считается непригодным, хотя Брэдинг [13] и взял патент на дуговую аппаратуру, предназначаемую для этих целей. Сюда же относится метод крекинга углеводородов в вольтовой дуге в присутствии мелкораздробленного угля [22]. [c.29]


Смотреть страницы где упоминается термин Равновесия реакций синтеза из промышленных газов: [c.68]    [c.101]    [c.156]    [c.215]    [c.53]    [c.39]   
Смотреть главы в:

Термодинамика реакций газификация и синтеза из газов -> Равновесия реакций синтеза из промышленных газов




ПОИСК





Смотрите так же термины и статьи:

Газы реакции

ПРОМЫШЛЕННЫХ ГАЗОВ

Промышленный синтез

Равновесие реакций

Равновесие реакций синтеза

Реакции синтеза



© 2024 chem21.info Реклама на сайте