Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обменные процессы в клетках микроорганизмов

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    В благоприятных условиях, т. е. в среде, где есть водный раствор питательных веществ, а также соответствующие физические и химические факторы (температура, pH, О2) в клетках микроорганизмов начинаются ферментативные процессы, обмен веществ с окружающей средой. Из веществ, проникших в клетку, образуются внутриклеточные вещества и структурные элементы. Одновременно идут процессы распада веществ — диссимиляции. Если анаболические процессы преобладают над катаболическими, наблюдается рост клетки, увеличение ее размеров. Достигнув определенных размеров в соответствующей фазе развития, клетка может начать размножаться. Скорость размножения зависит как от видовых свойств культуры, так и от условий окружающей среды. В благоприятных условиях каждое следующее поколение у дрожжевых клеток появляется через часовой интервал, а у некоторых бактерий даже через каждые 20—40 мин. Однако обычно размножение происходит гораздо медленнее, так как в среде роста всегда есть ограничивающие (лимитирующие) факторы нехватка какого-либо питательного вещества, изменение температуры, pH, образование токсических веществ, избыток клеточной массы на единицу объема и т. д. [c.61]

    Гормоны относятся к биологически активным веществам, определяющим в известной степени состояние физиологических функций целостного организма, макро- и микроструктуру органов и тканей и скорость протекания биохимических процессов. Таким образом, гормоны —вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. В это определение необходимо внести соответствующие коррективы в связи с обнаружением типичных гормонов млекопитающих у одноклеточных (например, инсулин у микроорганизмов) или возможностью синтеза гормонов соматическими клетками в культуре ткани (например, лимфоцитами под действием факторов роста). [c.248]

    Ферменты микроорганизмов. Ферментами, или энзимами, называются специфические белки с высоким молекулярным весом,, входящие в состав клеток и тканей живых организмов и значительно ускоряющие биохимические реакции. Поэтому они получили название органических или биологических катализаторов. Ферменты находятся везде, где только проявляется органическая жизнь. Их вырабатывают живые клетки, но осуществлять свое действие они могут и вне клеток. Очень велико значение ферментов в процессах обмена веществ внутри микробной клетки и между микроорганизмом и внешней средой, так как они ускоряют различные реакции, а следовательно, и весь обмен веществ. Ферменты были открыты в начале XIX в. В 1814 г. русский химик К. С. Кирхгоф обнаружил, что под действием вытяжки из проросших зерен крахмал превращается в сахар. Так был открыт первый фермент диастаз, или амилаза. В настоящее время открыт целый ряд ферментов, которые катализируют многочисленные реакции в живых организмах и, в частности, в микроорганизмах. Хи,мические реакции могут происходить и без ферментов, но при более высокой температуре и в присутствии кислот илн щелочей. [c.518]


    Обмен веществ у микроорганизмов заключается в поступлении питательных веществ из внешней среды в клетку и выделении во внешнюю среду продуктов их жизнедеятельности. Главными процессами обмена веществ является питание и дыхание. [c.512]

    Для сохранения интенсивности процесса очистки в зимнее время поддерживают более высокую концентрацию активного или в воде и большую аэрацию, которая активизирует обменные процессы в клетках микроорганизмов. [c.208]

    Наряду с успешной иммобилизацией многих ферментов и применением этого метода в промышленности исследователи столкнулись с рядом трудностей, характерных для работы с ферментами, зависимыми от кофакторов, а также в тех случаях, когда трансформации осуществляются несколькими ферментами. Были предприняты попытки использовать активность сложных ферментов и ферментных комплексов путем иммобилизации клеток. Иммобилизация клеток позволяет эксплуатировать отдельные ферменты, а также их системы, что затруднительно при работе с иммобилизованными ферментами. Обмен иммобилизованных клеток отличается от метаболизма интактных микроорганизмов, что может быть использовано в целях регуляции трансформации. Эффективность процессов, осун1.ествляемых иммобилизованными клетками, в ряде случаев выше их эффективности как у свободных микроорганизмов, так и у иммобилизованных ферментов. Для иммобилизации клеток используются почти все методы, применяемые для иммобилизации ферментов, но наиболее распространенным в настоящее время является включение в полиакриламидный (ПААГ) и каррагенановый гели (см. гл. Ю). [c.539]

    Если сравнить ферментативные процессы, протекающие у животных, высших растений и микроорганизмов, то можно заметить сходство, даже единство, лежащее в основе жизнедеятельности самых разнообразных живых существ. Считают, что процессы, идущие в животной клетке (например, клетке мозга), растительной (например, меристемы) или железобактерии, весьма близки и их метаболизм отличается лишь в деталях. Конечно, правильно, что такие процессы, как синтез белка, перенос электронов, фосфорный обмен или цикл трикарбоновых кислот, как и множество других явлений, сходны у самых разнообразных многоклеточных и одноклеточных организмов. Однако наряду с этим необходимо всегда иметь в виду характерные, специфические особенности обмена веществ и, следовательно, ферментативных процессов у микроорганизмов, которые способны и отличными способами реагировать на физические и химические воздействия, и осуществлять сложные каталитические реакции таких типов, которые никогда не выполняются животными и высшими растениями. [c.113]

    Природа адсорбционного взаимодействия микроорганизмов с твердыми материалами окончательно не выяснена. Предполагается, что основную роль в этом процессе играет электростатическое притяжение (и даже ионный обмен), которое зависит от природы поверхности твердого тела, величины и характера ее заряда, а также от электрокинетических свойств клетки. Д. Г. Звягинцев [103, с. 53] приводит целый список сил, возможно принимающих участие в процессе адгезии клеток  [c.191]

    Однако рост культуры нельзя рассматривать как механический прирост или уменьшение клеток. Фазы развития культуры сопровождаются физиологическими изменениями в клетках микроорганизмов. Молодые клетки, имеющие высокую интенсивность метаболизма, постепенно стареют, что способствует снижению интенсивности обменных процессов. [c.219]

    Все микроорганизмы объединяются общностью строения клетки и направленности обменных процессов, едиными закономерностями роста и развития при выращивании на различных средах и в различных аппаратах. Такие общие сведения о микроорганизмах и некоторых их свойствах и являются предметом изложения первой части книги. [c.12]

    Перевод микроорганизма на углеводородное питание связан с изменением большинства обменных процессов и перестройкой ферментных систем клетки. Совокупность специфических изменений, происходящих под воздействием новой среды, характеризует период адаптации микроорганизма к углеводородам. [c.244]

    Обменные процессы в клетках микроорганизмов [c.56]

    Жизнь микроорганизмов неразрывно связана с окружающей средой. С одной стороны, деятельность микробов приводит к значительным изменениям окружающей среды в результате удаления из нее питательных веществ и выделения продуктов обмена с другой стороны, интенсивность обменных процессов внутри клетки во многом зависит от условий (факторов) окружающей среды. Факторы окружающей среды, влияющие на деятельность микроорганизмов, подразделяют на три категории физические, химические и биологические. [c.67]

    ОБМЕННЫЕ ПРОЦЕССЫ В КЛЕТКАХ МИКРООРГАНИЗМОВ [c.56]

    Действие антибиотиков основано на том, что они нарушают обмен веществ в клетках других микроорганизмов или затормаживают определенные биохимические реакции. Например, стрептомицин нарушает окислительные процессы в микробных клетках, отчего они гибнут. [c.512]


    Антибиотики—вещества, образуемые микроорганизмами или получаемые из других природных источников, обладающие антибактериальным, антивирусным и противоопухолевым действием. Они вмешиваются в обмен белков, нуклеиновых кислот и в энергетические процессы пораженных организмов и клеток, избирательно воздействуя на определенные молекулярные механизмы. Так, в биосинтезе белка (о поименованных ниже этапах биосинтеза белка см. гл. VII) пуромицин высвобождает недостроенные полипептиды, тетрацик-лины подавляют присоединение аминоацил-тРНК к рибосоме, хлорамфеникол (левомицетин)—пептидилтрансферазную реакцию в ней, эритромицин блокирует перемещение рибосомы по информационной РНК, стрептомицин искажает считывание кода белкового синтеза. В биосинтезе нуклеиновых кислот (терминологию см. в гл. VI) противораковые и антибактериальные антибиотики (актиномицины, митомицин, новобицин, рифамицин и др.) подавляют процессы репликации и транскрипции. На энергетические процессы в клетке воздействуют антимицин (подавляет перенос электронов в цитохромной системе), ОЛИГОМИ1ЩН (подавляет сопряжение окисления с фосфорилированием) и другие антибиотики. Биосинтез гликопротеинов клеточных стенок бактерий приостанавливается под действием пенициллинов и D-циклосерина проницаемость клеточных мембран нарушается грамицидинами, нистатином и многими другими антибиотиками. [c.175]

    Интенсивный обмен веществ между клеткой и средой обеспечивается большой поверхностью тела микроорганизма, через которую происходит поступление питательных веществ и выделение в окружающую среду продуктов жизнедеятельности клетки. В процессе роста и развития микроорганизмов заметно изменяется состав среды обитания, часть соединений непосредственно или после предварительного гидролиза ферментами клетки транспортируется внутрь микроорганизма, претерпевая сложные биохимические превращения в клеточное вещество микроба, а частично вновь поступает в среду в виде нереализуемых клеткой продуктов обмена. [c.38]

    Один из важных вопросов биологии, который может пролить свет на проблему риккетсий, — это вопрос о том, являются ли вирусы отделившейся частью клетки или же представляют собой выродившийся конечный продукт эволюции неких высших форм. Согласно первой теории, вирусы возникли из какой-то части живой клетки организма-хозяина, возможно из генов. Согласно второй— они произошли от более сложных микроорганизмов, возможно от бактерий. При этом они постепенно утратили все формы обмена, свойственные бактериям, и оказались в полной зависимости от клеток, в которые они внедряются, во всем, что касается различных обменных реакций и синтетических процессов, необходимых для их размножения. В настоящее время мы видим в риккетсиях промежуточное звено между вирусами и бактериями. Подобно вирусам, они могут расти только в живых клетках, но они обладают, по-видимому, некоторыми формами обмена веществ, свойственными бактериям. [c.150]

    Именно э таких ситуациях люди с надеждой смотрят на химиков, поскольку с помощью подходящих химических средств можно достичь общего воздействия на опухолевые клетки независимо от их локализации в теле. Но, к сожалению, химиотерапия рака в противоположность химическому лечению бактериальных инфекций что-то очень долго не выходит из детского возраста . Разумеется, причины для этого есть. Микроорганизмы имеют собственный обмен веществ, явно отличающийся от обмена веществ клеток организма, в котором они паразитируют. Тем самым появляется исходный пункт для нарушения процесса их жизнедеятельности селективно влияющими медикаментами. В случае злокачественных опухолей, наоборот, различить раковые клетки и клетки организма трудно, так как первые возникают из вторых и имеют минимальные биохимические особенности. Поэтому до сих пор биохимики при разработке подходящих веществ, которые смогли бы затормозить развитие рака (цито-статических препаратов), опираются только на то обстоятельство, что скорость деления клеток раковых опухолей неизмеримо больше, чем в здоровых тканях. Такие находящиеся в стадии деления клетки очень легко повредить действием определенных химикалий. Однако в организме имеются такие участки и ткани, скорость деления клеток которых по сравнению с нормальными клетками тела выше средней. Это, например, костный мозг (осуществляющий регенерацию крови), слизистая оболочка кишок и половые железы. Борьба с раком путем торможения деления клеток может одновременно повредить и эти чувствительные клетки тела. [c.334]

    По сравнению с процессами, протекающими в присутствии кислорода, брожение — эволюционно более ранняя, но энергетически менее выгодная форма извлечения энергии из питательных веществ. Процессы брожения сформировались у простейших организмов в те времена, когда атмосфера Земли не содержала кислорода. Постепенно доля брожения в энергетическом обмене уменьшалась за счет развития более эффективного аэробного пути образования энергии. К брожению способны животные, растения и многие микроорганизмы (дрожжевые грибы, бактерии). Брожение является также жизненно важным процессом и для человеческого организма. Когда поступление кислорода оказывается недостаточным, например при крайнем физическом напряжении, мышечные клетки образуют лактат путем брожения. Кроме того, в организме человека есть ткани, которые слабо снабжаются кровью и кислородом (хрусталик и роговица глаза). В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется путем сбраживания глюкозы в лактат. [c.409]

    В микробной химий используются не только процессы трансформации, осуществляемые микроорганизмами в природе или в стандартных условиях культивирования. Развитие этого направления исследований и соответствующей отрасли промышленности связано со все более радикальным воздействием экспериментатора на обмен веществ микробной клетки с целью интенсифицировать и вычленить из ее метаболической системы действие отдельных ферментов или фрагментов метаболических последовательностей. Это дает возможность препаративно получать продукты неполного превращения органических соединений, используя микроорганизмы, у которых в обычных условиях способность осуществлять данную трансформацию не выражена. Существует обширный арсенал биохимических, генетических, [c.524]

    Механизм действия антибиотиков различен. Они либо препятствуют развитию микробов (бактериостатическое действие), либо вызывают их гибель (бактерицидное действие) или растворение (бактериолитическое действие). Некоторые антибиотики создают такие условия среды, в которых образуются нежизнеспособные дегенеративные формы микробов. Влияние антибиотиков на обмен веществ микробной клетки изучено недостаточно. Они избирательно поражают отдельные ферментативные системы и таким образом нарушают нормальный обмен веществ у микроорганизмов. Известно, например, что пенициллин подавляет обмен глютаминовой кислоты в клетках грамиоложительных бактерий и препятствует усвоению необходимых аминокислот из питательной среды. Террамицин оказывает задерживающее влияние на процессы фосфорилирования. Мало изучено влияние отдельных антибиотиков на макроорганизм. Установлено, что некоторые антибиотики оказывают благоприятное влияние. Так, например, ауреомицин в сочетании с кобаламином способствует росту и развитию птиц и свиней и получил поэтому широкое применение в сельскохозяйственной практике. [c.308]

    Аккумулирование энергии в клетках микроорганизмов. Обмен веществ и энергии осуществляется в результате многих ферментативных реакций, сопровождающихся выделением или поглощением энергии. Микроорганизмы обладают способностью аккумулировать энергию в определенных макроэргических соединениях, содержащих химические связи, при разрыве которых выделяется большое количество энергии. Одним из таких аккумуляторов энергии является аденозинтрифосфат (АТФ), который синтезируется из аде-нозиндифосфата (АДФ) путем присоединения остатка фосфорной кислоты. Синтез АТФ осуществляется за счет энергии, выделяющейся при протекании ряда окислительно-восстановительных реакций. Если окисление органических веществ идет ири участии кислорода, то процесс образования АТФ, сопряженный с ним, называется окислительным фосфорилированием. Процесс перехода АДФ в АТФ обратим, и энергия, необходимая для обеспечения биосинтеза, выделяется при отщеплении от молекулы АТФ фосфорной кислоты. Взаимосвязь между реакциями синтеза и разложения АТФ можно показать схематически следующим образом  [c.215]

    Ф. играет важную роль в обмене в-в и энергии в клетках животных, растений и микроорганизмов. Донорами фосфорильной группы служат АТФ и др. нуклеозидтрифосфа-ты. Ф. аденозиндифосфа.та фосфорной к-той — осн. процесс синтеза АТФ, к-рый осуществляется в результате окисления низкомол. орг. соединений в анаэробных условиях (гликолитич. Ф.), аэробных условиях окислительное фосфорилирование) или в результате фотосинтеза (фото-фосфорилирование). Э. Е. Нифантъев. [c.629]

    Для осуществления ряда обменных реакций микробные клетки нуждаются в постоянном притоке энергии. Эту энергию микроорганизмы получают в процессах окислительного метаболизма или дыхания. Термин дыхание равнозначен понятию биологическое окисление, но окисление понятие более конкретное, чем дыхание. Под дыханием нередко понимают приспособления для осуществления дыхания (легкие, жабры). Биологическое окисление составляет сущность дыхания — реакцию, идущую с выделением энергии. Биологическое окисление может быть прямым, т. е. происходить за счет присоединения кислорода. Прямое окисление в микробной клетке происходит с помощью ферментов оксидаз. Наблюдается у почвенных сапрофитных бактерий или у водных хемоавтотрофов серобактерий  [c.93]

    Изменчивость микроорганизмов. Изменчивость является одной из наиболее важных сторон жизни и развития микроорганизмов. Сущность ее заключается в реакции организма на изменения, происходящие во внешней среде или внутри клетки, в структуре и функциях наследственного аппарата микроорганизма. Наследственность, обеспечивающая постоянство видовых признаков, и изменчивость представляют собой взаимосвязанные диалектические противоположности процесса развития организма. Именно изменением и наследованием приобретаемых признаков в процессе эволюции произошло выделение паратрофов из группы гетеротрофов. Микроорганизмы быстро адаптируются к изменившимся условиям среды обитания, изменяя соответствующим образом обмен веществ. Классическим примером адаптации микроорганизмов к воздействию внешних факторов может служить появление форм болезнетворных микроорганизмов, устойчивых к действию лекарственных веществ. На изменчивости микроорганизмов основано выведение микрофлоры, способной осуществлять превращения органических веществ, которые не разлагаются обычной микрофлорой воды или почвы. Изменения формы и функциональных особенностей микроорганизмов могут быть вызваны действием физических, химических или биологических факторов. Приобретаемые микроорганизмами признаки могут быть связаны только с условиями жизни отдельного микроорганизма и не передаваться по наследству. [c.229]

    Фильтрующиеся формы возникают в бактериальных культурах под влиянием неблагоприятных условий, бактериофага, иммунной сыворотки, а также при старении культуры. Свое название они получили вследствие способности проходить через бактериальные фильтры. Их выделяют из стерильных бактериальных фильтратов. Природа фильтрующихся форм до настоящего времени точно не установлена их считают либо измельченными бактериальными клетками, либо частицами, капельками протоплазмы бактериальных клеток. Образующиеся в процессе регенерации вторичные культуры почти всегда имеют неустановившуюся наследственность и иногда измененный обмен веществ. Роль фильтрующихся форм и вторичных культур в жизни микроорганизмов, в патогенезе заболеваний остается спорной. Поэтому понятен интерес микробио логов к фильтрующимся формам и вторичным культурам и к выяснению той биологической роли, которую они играют в жизненном цикле бактерий. Для разрешения этого и многих других вопросов необходимо всестороннее изучение обмена веществ у фильтрующихся форм и вторичных культур в процессе их развития. [c.287]

    Единство и теснейшая связь процессов брожения и дыхания растений, микроорганизмов и животных вытекают из того факта, что почти у всех живых организмов имеются одинаковые ферменты и те же основные промежуточные продукты, которые образуются в процессе их жизнедеятельности. Начальные этапы распада углеводов при анаэробном и аэробно.м дыхании одинаковы и начинаются с образования фосфорных эфиров глюкозы, именно глюкозо-1-фосфата, глюкозо-6-фосфата и фруктозо-1,6-дифосфата. Фосфорилирование глюкозы является необходимым условием как при аэробном распаде углеводов до углекислого газа и воды во время дыхания, так и при распаде углеводов в анаэробных условиях с образованием молочной кислоты и спирта. Пути аэробного и анаэробного распада углеводов расходятся на стадии образования пировиноградной кислоты в животные тканях или соответственно уксусного альдегида в дрожжевых клетках. Пировиноградная кислота занимает центральное положение в обмене углеводов. Она образуется из глюкозы (после фосфорилирования) или из гликогена (после фосфоролиза) путем нормального гликолиза. В анаэробных условиях пировиноградная кислота либо распадается в результате прямого декарбоксилирования, как это наблюдается в дрожжах, либо восстанавливается водородом до молочной кислоты, как это имеет место в мышцах. Спирт и молочная кислота являются конечными продуктами анаэробного обмена. В аэробных условиях пи-роаиноградная кислота полностью окисляется до углекислого газа и воды, [c.339]

    Биологический смысл природной компетентности бактерий не вполне понятен. Процесс трансформации бактериальных клеток в природных условиях обеспечивает поддержание жизненно важного динамического состояния генома бактериальных клеток. Развитие компетентности тесно сопряжено с рекомбинацией и репарацией бактериальных хромосом и является одним из молекулярных механизмов, обеспечивающих горизонтальный перенос генов у микроорганизмов [204]. В настоящее время имеются указания на то, что донорная ДНК, которая захватывается бактериальными клетками в природных популяциях микроорганизмов, появляется не только из-за случайной гибели клеток. Развитие компетентности, по крайней мере у Strepto o us pneumoniae, индуцирует лизис части клеток этой популяции и освобождение геномной ДНК, а следовательно, процессы освобождения ДНК и ее захвата бактериальными клетками в таких системах координированы [205]. Суммируя данные о биологическом значении природной компетентности бактериальных клеток, можно заключить, что при участии этого процесса происходит обмен генетической информацией в популяциях микроорганизмов, что необходимо для поддержания генетического разнообразия вида и распространения генов, важных для выживания бактерий в изменяющихся условиях окружающей среды. Кроме того, трансформирующая ДНК может участвовать в репарации повреждений бактериальных хромосом после генотоксических воздействий [206]. [c.144]


Смотреть страницы где упоминается термин Обменные процессы в клетках микроорганизмов: [c.52]    [c.93]    [c.180]    [c.629]    [c.20]    [c.402]    [c.48]   
Смотреть главы в:

Химия воды и микробиология Издание 2 -> Обменные процессы в клетках микроорганизмов




ПОИСК





Смотрите так же термины и статьи:

Обменные процессы



© 2025 chem21.info Реклама на сайте