Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы осаждение кристаллизация

    Из экспериментальных важнейшим является метод химических реакций, который служит основой качественного и количественного анализа веществ и их синтеза. Здесь главную роль играют изменение состава веществ и количественные соотношения между реагирующими веществами. При проведении химических реакций и получении веществ в чистом виде важное значение имеют разнообразные препаративные методы осаждение, кристаллизация, фильтрование, перегонка, сублимация и т. п. За последние годы они получили большое развитие и широко применяются для получения веществ высокой степени очистки. Сюда можно отнести методы зонной очистки, направленной кристаллизации, вакуумной перегонки и сублимации. [c.8]


    При проведении химических реакций, а также при выделении веществ из смеси в чистом виде и поныне исключительно важную роль играют препаративные методы осаждение, кристаллизация, фильтрование, сублимация, перегонка и т. п. В настоящее время многие из этих классических препаративных методов получили большое развитие и являются ведущими в технологии получения особочистых веществ и монокристаллов. К ним относятся методы направленной кристаллизации, зонной перекристаллизации, вакуумной сублимации, фракционной перегонки. Одна из примечательных особенностей современной неорганической химии — исследование особочистых веществ на монокристаллах. [c.8]

    Изучение структуры и свойств белков и нуклеиновых кислот шагнуло далеко вперед после создания совершенных методов их выделения и очистки. Помимо ранее широко применявшихся методов осаждения, кристаллизации и диализа, для этой цели стали использоваться методы электрофореза, хроматографии, сорбции и противоточной экстракции. Ввиду того что природа биополимеров как полиэлектролитов проявляется во всех физико-химических процессах, возникает необходимость рассматривать электрохимические свойства белков и нуклеиновых кислот, что удобнее всего осуществлять с помощью потенциометрического титрования. [c.5]

    Фракционирование сложных смесей веществ является одним из основных этапов в решении многочисленных проблем биохимии, биофизики и молекулярной биологии, в связи с тем что биологические системы содержат большое число компонентов, часто близких по ряду химических и физических свойств, а также в связи с развитием методов изучения первичной структуры биополимеров. Выделение отдельных компонентов из таких систем является, как правило, весьма сложной экспериментальной задачей, решение которой ранее осуществлялось путем использования физико-химических методов — осаждения, кристаллизации и сорбции. В настоящее время имеется большой арсенал средств избирательного выделения компонентов или разделения сложных смесей с получением всех веществ в чистом виде. К ним относятся в области изучения биополимеров и их фрагментов прежде всего хроматография и электрофорез. Для аналитических целей при рассмотрении систем, содержащих ограниченное число компонентов, успешно применяется также седиментация, диффузия и ряд других процессов, в которых осуществляется обычно не полное разделение компонентов, а относительное смещение границ зон отдельных веществ. [c.6]


    В случае медленного прибавления по каплям второго растворителя при интенсивном перемешивании создаются условия для равномерного роста кристаллов. Такой метод осаждения, по существу, является разновидностью кристаллизации и обеспечивает высокоэффективную очистку. Основное вещество, так же как и при упаривании, может быть выделено полностью в виде фракций кристаллов различной степени очистки. Чтобы получить хорошие кристаллы, растворитель добавляют по каплям иногда несколько часов, поэтому перемешивание проводят не вручную, а с помощью электромотора растворитель добавляют из капельной воронки. [c.120]

    Так же, как и метод дробной кристаллизации, в настоящее время дробное осаждение применяется, главным образом, для получения концентратов РЗЭ. Доочистка производится ионообменным и экстракционным методами. [c.108]

    Одной нз важнейших задач, которую приходится решать химику как при лабораторном, так и промышленном синтезе органического вещества, является получение конечного продукта реакции в наиболее чистом состоянии. Методы, ведущие к этой цели, зависят от агрегатного состояния получаемого вещества и потому могут быть весьма разнообразными. Наиболее значительное место принадлежит процессам перегонки, которые встречаются в большинстве химических производств и дают возможность получать чистые вещества наиболее легким и часто единственным путем. Знание принципов перегонки (как и принципов осаждения, кристаллизации и других процессов разделения) необходимо каждому химику, а химику-органику в особенности. [c.72]

    Большая часть ортофосфатов металлов, как указано в табл. 7, была приготовлена преимущественно тремя методами осаждением малорастворимых ортофосфатов, кристаллизацией из равновесных растворов и высокотемпературными реакциями в твердой фазе. Высокотемпературные реакции обычно пригодны только для получения трехзамещенных фосфатов, не содержащих гидратной или связанной воды. Для получения соединений этими методами синтез нужно проводить при температурах ниже температур плавления и стеклования. Методами осаждения не всегда получают термодинамически устойчивые твердые фазы, и состав осадков может изменяться в зависимости от условий осаждения. Иногда трудно воспроизвести получение ортофосфатов методом осаждения, если условия реакции описаны недостаточно подробно. Методы кристаллизации позволяют получить соединения определенного состава, соответствующие фазовой диаграмме, если кристаллизация производится не слишком быстро. Для надежности методы кристаллизации указаны в таблице только в тех случаях, когда имеются данные о фазовом равновесии. [c.215]

    Для получения особо чистых солей рубидия и цезия [419] наиболее часто применяются методы осаждения труднорастворимых солей и фракционированной кристаллизации из водных и неводных растворов (см. [454]). Примеси из растворов могут попасть п твердую фазу либо вместе с жидкой фазой, захваченной кристаллами, либо вследствие поверхностной адсорбции, либо в результате образования твердых растворов. Большинство случаев сокристаллизации примесей связано с процессом образования не истинных, а аномальных твердых растворов, происхождение которых обусловлено не простым ионным или атомным замещением, а протекающими при кристаллизации химическими реакциями, комплексообразованием, полимеризацией и т. д. [344—346, 420— 422]. [c.352]

    Для регенерации неиспользованного ядерного горючего водного гомогенного реактора и, в частности, переработки материала ториевой зоны воспроизводства применяю методы осаждения, ионообменной хроматографии, экстракции, кристаллизацию нитратов или сочетание нескольких методов. [c.235]

    В последнее время метод дробной кристаллизации существенно улучшен введением в перерабатываемую смесь различных веществ, образующих с рзэ комплексные соединения [429, 1020, 1407, 1968, 1969]. Это значительно ускоряет процесс разделения благодаря тому, что в комплексных соединениях индивидуальные особенности элементов проявляются иногда отчетливее. Аналогичным образом применение комплексообразования позволяет усовершенствовать и процесс дробного осаждения [680]. Это дало возможность сравни- [c.18]

    Метод экстракции. Нередко в целях очистки антибиотика от различных примесей его многократно переводят из одного растворителя в другой с предварительным осаждением (кристаллизацией). Такой прием носит название перекристаллизации. [c.81]

    На основе исследования химизма основных методов разделения природных смесей р. 3. э. и, в частности, роли комплексообразования в этих процессах, а также изучения способов моделирования масштабов процессов, например хроматографических [38, 39], при участии авторов были разработаны и внедрены технологические способы получения индивидуальных р.з.э. высокой чистоты, частично опубликованные в литературе [11—14, 40— 53]. В основу таких технологических схем было положено сочетание различных методов разделения на первых этапах — методов большой производительности со сравнительно невысокими степенями разделения (деление на подгруппы, основное осаждение, кристаллизация), на последних этапах— методы меньшей производительности, но с высокими степенями разделения (ионообменная хроматография, выделение элементов с переменной валентностью). Промежуточное положение занимают экстракционные процессы, которые в зависимости от масштабов производства могут быть использованы на первых или последних стадиях технологии. [c.291]


    Кригбаум и Курц [77] пытались фракционировать кристаллический изотактический полистирол и полиакрилонитрил при значительно более низких температурах по сравнению с температурами плавления путем осаждения полимеров в колонке. Нагретый раствор полимера пропускали через колонку, которая была нагрета в верхней части и охлаждена в нижней. Разделение достигалось фракционным осаждением в колонке, а не фракционным вымыванием осажденной фазы. Предполагалось, что первоначальное аморфное разделение можно будет получить, воспользовавшись малой скоростью кристаллизации из разбавленных растворов. Метод осаждения на колонке не дает лучшего фракционирования полиакрилонитрила, чем обычное раздельное двухстадийное фракционирование. Однако для изотактического полистирола с молекулярным весом до 1,5 10 было получено хорошее разделение на фракции. Полимер с молекулярными весами выше этого уровня стягивался в узкую полосу в верхней части колонки. [c.326]

    Осаждение и растворение фосфатов кальция составляют важную проблему в биологии, океанологии, при очистке сточных вод и производстве удобрений из фосфорсодержащих минералов [1—3]. До сих пор нет единой точки зрения относительно механизма осаждения фосфатов кальция. Значительное внимание уделяли в основном изучению самопроизвольного-осаждения [4], но такие процессы редко удается воспроизвести количественно. Для инициирования самопроизвольного осаждения в достаточно короткое время в лабораторных условиях часто процесс проводят при таких высоких концентрациях ионов и значениях pH, которые для природных процессов не харак терны. Однако в таких условиях трудно разделить процессы-образования и созревания центров кристаллизации и роста уже существующих центров. Поэтому разработка промышленных методов осаждения редко базируется на лабораторных методах. Для этого обычно требуется дорогостоящая исследовательская работа в условиях, приближенных к производственным. Совершенно очевидно, что для оптимизации процессов осаждения желательны лабораторные методы испытания, которые давали бы воспроизводимые результаты в условиях, близких к условиям в натуре . [c.17]

    Для дробной кристаллизации чаще всего пользуются различной растворимостью двойных нитратов РЗЭ и магния, аммония или марганца. Этот метод может считаться классическим . Несмотря на. трудоемкость и длительность, метод кри-, сталлизации не теряет своего значения, так как позволяет получать препараты большей чистоты, чем метод осаждения. Его продолжают совершенствовать и разрабатывать в новых вариантах. [c.315]

    Благодаря исключительной близости химических свойств гафния и циркония разделение этих элементов представляет технически трудную задачу, осуществляемую с помощью специальных методов дробной кристаллизации, осаждения и дистилляции, а также методами экстрагирования, адсорбции и ионного обмена. [c.411]

    При наиболее полных количественных исследованиях процессов переноса посредством изоморфного замещения проводилась дробная кристаллизация и применялись умеренно растворимые соли, что давало возможность строго контролировать условия. В следующих разделах будут рассмотрены эти методы осаждения, распределение индикатора и два граничных закона, которые, повидимому, справедливы для этих распределений. [c.90]

    Не менее важное значение в технологии имеют процессы разделения элементов и получения их соединений в чистом виде. Поэтому в книге рассматриваются процессы осаждения, кристаллизации, ионного обмена, экстракции, возгонки и конденсации, а также кристаллофизические методы очистки и некоторые другие. В отдельных главах дается краткая физико-химическая характеристика процессов разделения и очистки. [c.6]

    Для очистки соединений рубидия и цезия (в понятие очистки входит разделение этих элементов и отделение их от калия) находят применение (или рекомендованы) главным образом либо методы фракционированной кристаллизации, либо методы осаждения малорастворимых соединений. В качестве подходящих соединений преимущественное значение получили двойные сульфаты и двойные хлориды рубидия и цезия [13, 15, 50]. [c.83]

    Дробное осаждение и дробная кристаллизация. Методы дробной кристаллизации и дробного осаждения под общим названием классических являются наиболее старыми. В основе этих методов лежит различие в растворимости однотипных соединений. В процессе кристаллизации и осаждения жидкая фаза обогащается более растворимыми соединениями, а твердая — менее растворимыми. [c.294]

    Дробное осаждение. По сравнению с дробной кристаллизацией дробное осаждение дает более высокий коэффициент обогащения, хотя осуществление процесса и более сложно, так как необходимо проводить операции фильтрования и промывки. Основной недостаток метода осаждения — образование местных пересыщений в момент добавления осадителя. Чтобы этого не было, прибегают к различным приемам вводят буферные смеси и различные добавки, селективно повышающие растворимость. Довольно широкое распространение получил метод гомогенного осаждения, при котором осадитель образуется в самом растворе.  [c.299]

    Разделение экстракцией более удобно, чем методом осаждения, так как при этом отпадает необходимость отделения осадков. Кроме того, при экстракции очень мала поверхность раздела между несмешнвающимися жидкостями и не проис ходит кристаллизация, а следовательно, нет и соосаждения, которое весьма затрудняет разделение. Достоинством метода является также быстрота и то, что стряхивание исследуемого раствора с подходящим растворителем дает возможность извлекать вещество из большого объема водной фазы в малый — органического растворителя, т. е. концентрировать его. [c.129]

    Перспективно применение Д для нанесения металлич. и оксидных покрытий на разл. подложки для разделения, очистки и анализа смесей разл. металлов (в виде их Д.) методами экстракции, газовой и жидкостной хроматографии, фракционной сублимации, зонной плавки н кристаллизации для легирования разл. материалов методом осаждения из газовой фазы в качестве катализаторов полимеризации и окисления, сдвигающих реагентов в спектроскопии ЯМР. Соед. дипивалоилметана и Се(1У) предложено использовать в качестве антидетонаторов моторного топлива. Наиб, доступные и дешевые-ацетилацетонаты металлов. [c.59]

    Вырящнваяне яз пара. Исходное поликристаллич. шга аморфное в-во помещают в источник пара (питатель) и нагревают до испарения. Пары в-ва из источника диффундируют или переносятся с потоком газа-носителя в зону, где находится затравка, охлажденная относительно источника (метод десуолнмации). В качестве источника используют тасже в-ва, при разложения к-рых на затравке образуется кристаллизующееся в-во. Затравку при этом нагревают до т-ры, при к-рой разложение исходного в-ва происходит с достаточной скоростью (метод ван Аркела и де Бура). Иногда в пар вводят реагенты, к-рые взаимод. на пов-сти затравки с образованием кристаллизующегося в-ва (метод хим. кристаллизации, см. Химическое осаждение из газовой фазы). Если в-во является нелетучим, ио образует летучие термически неустойчивые соед. с к.-л. другим в-вом (транспортирующим реагентом), то М. в. проводят методом хим. транспорта. При этом источник и затравку помещают в пары транспортирующего реагента, а затравку нагревают относительно источника в результате в источнике образуется летучее соед., к-рое переносится к затравке, где разлагается с регенерацией транспортирующего реагента (см. Химические транспортные реакции). Монокристаллич. пленки (напр.. Ge) получают конденсацией мол. пучков на пов-сти затравки (метод Векшинского). [c.132]

    Выделяют Р. в виде Ra U или др. солей как побочный продукт переработки урановых руд (после извлечения из них U), используя методы осаждения, дробной кристаллизации, ионного обмена металлич. Р. получают электролизом р-ра [c.154]

    Для разделения s, Rb и К и получения чистых соед. Ц. применяют методы фракционированной кристаллизации квасцов и нитратов, осаждения и перекристаллизации s3[Sb2 l9], 82[Sn y. Используют также ионообменную хроматофафию на синтетич. смолах и неорг. ионитах (кли- [c.332]

    Из большого числа методов разделения ниже приведено лишь несколько пригодных для работы с небольшими количествами веществ н достаточно простых в аппаратурном оформленпи. Более подробно с этим вопросом можно ознакомиться по специальным монографиям. Обширная информация содержится в обзорах [1, 2]. Будут рассмотрены следующие методы фракционирования кристаллизация, осаждение, дистилляция, селективные реакции и электролиз, ионный обмен и адсорбция, распределение между двумя растворителями. [c.1420]

    Можно кристаллизовать и различные другие соли — броматы, диметилфосфаты для получения чистых солей эрбия был применен ([815] метод дробной кристаллизации оксалата из солянокислых растворов, а Марш [816] показал, что для дробной кристаллизации можно воспользоваться большой разницей в растворимости двойных солей ЭДТА с отдельными лантанидами, К методам фракционного о с а ж д е н и я относится в первую очередь осаждение двойных сульфатов, широко применяемое на практике и частично уже описанное выше. Это старый метод, примененный еще Берцелиусом, тоже классический метод разделения РЗЭ на цериевую и иттриевую группы. За последние годы этот метод был подробно изучен и усовершенствован [817] сокращено число переосаждений, разработаны приемы, позволяющие разделять РЗЭ не только на две, но и на три [c.315]

    Пленки бора получают различными методами, из которых следует отметить метод термического разложения трихлорида бора в присутствии водорода с осаждением на нагретую до 997—1017 °С грань <111> р-кремния, метод вакуумного испарения и конденсации на нагретую до различных (20—797°С) температур подложку из плавленого кварца, слюды, каменной соли, сапфира или стекла, метод электронно-лучевого испарения и конденсации в вакууме 1,33-10- Па иа подложки из тантала илн ниобия (с подслоем йз вольфрама, хлористого бария или без подслоя), разогретые до 297—1197°С, и т. п. Ультрачистые пленки бора получают расплавлением и испарением капли на вертикальном стержне бора. Варьируя температуру капли от 697 до 2497 °С, можио изменить скорость испарения в широких пределах, управляя таким образом скоростью осаждения бора на подложке и совершенством образующихся пленок. Известен также способ получения пленок путем мгновенного охлаждения из жидкости. Применяют следующие схемы закалки прокатка жидкой капли, центрифугирование и захлопывание летящей капли двумя медными шайбами и т. д. Кристаллическое строение пленок бора определяется условиями кристаллизации. Так, пленкк, получаемые методом термического разложения трихлорида, имеют главным образом моно- и поликристалличсское строение, методом вакуумного испарения —в основном аморфное при применении в качестве подложек кремния и сапфира строение пленок зависит от температуры подложки — до 797 °С аморфное, при температуре до 897 "С кристаллическое и т. д. При получении пленок путем закалки из жидкой фазы скорости охлаждения составляют Ю —10 с-, а толщина пленок 40—120 мкм. В этом случае пленки имеют преимущественно кристаллическое строение для получения аморфного бора необходимы более высокие скорости. Метод осаждения бора из газовой фазы на подложку используют также для получениях борных нитей. В этом случае осаждение производят иа сердечник из вольфрама диаметром 15—16 мкм, толщина получаемого при этом борного слоя составляет до 50 мкм. В процессе осаждения происходит борирование вольфрама подложки и образуются бориды различного состава. В борном слое обнаружены аморфная и а- и Р-модификации, имеющие монокрнсталли-ческое строение с размерами кристаллитов 2—3 нм. Заметное влияние иа структуру бора оказывают примеси, попадающие в слой из газовой фазы или подложки. Так, присутствие углерода способствует образованию тетрагонального бора вместо Р-ро.мбоэдрического. [c.149]

    Наряду с методами выделения радиоизотопов соосаждением и адсорбцией разделение можно вести методами осаждения и кристаллизации посторонних веществ, которые необходимо удалить. При этом радиоизотоп остается в растворе. Условия разделения подбирают таким образом, чтобы радиоактивный элемент не мог осаждаться и адсорбироваться. Условия, при которых возможность соосаждения сильно снижается или полностью устраняется, практически должны соблюдаться при любом разделении радиоактивных элементов методом осаждения. Например, при отделении Ра234 и 1Л соосаждения избегают добавлением антиносителей. [c.241]

    Дернер и Хоскинс [27] исследовали осаждение радия методом дробной кристаллизации. На рис. 9-2 представлена [28] степень окклюзии, которую можно ожидать при условиях гетерогенного и гомогенного образования твердого раствора. [c.194]

    Часто условия образования осадка являются критическими. В большинстве случаев операцию осаждения проводят путем мед ленного добавления осадителя при интенсивном перемешивании. Такой метод приводит к образованию крупных хорошо фильтрующихся кристаллов при минимальном соосаждении примесей. Чтобы избежать утомительной операции медленного добавления осадителя, пользуются методом осаждения из гомогенного раствора (ОИГР). При ОИГР осадитель гомогенно генерируется в ненасыщенном растворе, обычно в результате химической реакции. Осаждение можно вызвать двумя способами медленным изменением pH раствора, приводящим к изменению растворимости вещества, или медленным повышением концентрации одного из реагентов. Ско рость генерирования осадителя можно уменьшить таким образом, что для проведения количественного осаждения потребуется несколько часов или даже дней. Такое медленное осаждение позволяет получить осадок с наиболее благоприятными физическими и химическими свойствами, поскольку при этом удается избежать гомогенного образования центров кристаллизации (см. разд. 8-2), к тому же гетерогенное образование центров кристаллизации происходит, по-видимому, лишь на небольшом числе участков нуклеации. [c.200]


Смотреть страницы где упоминается термин Методы осаждение кристаллизация : [c.163]    [c.178]    [c.371]    [c.210]    [c.21]    [c.267]    [c.809]    [c.90]    [c.505]    [c.417]   
Курс современной органической химии (1999) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Метод осаждения



© 2025 chem21.info Реклама на сайте