Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термический второй

    В соответствии с ГОСТ 7885—68 в Советском Союзе выпускается 8 марок сажи для резиновой промышленности. Они различаются между собой по способу производства, применяемому сырью, удельной поверхности и уровню структурности. В названиях марок первая буква обозначает способ производства (Д — сажа канальная, получаемая в диффузионном пламени П — сажа печная Т — сажа термическая), вторая буква указывает на сырье (Г — газ, М — масло, нефтяное или каменноугольное, ГМ — смесь газа и масла), и, наконец, цифра обозначает величину удельной геометрической поверхности в м 1г. [c.218]


    По ГОСТ первая буква указывает способ получения сажи Д — диффузионная, П — печная, Т — термическая. Вторая буква указывает вид применяемого сырья Г — газовая, М — жидкое сырье (масло) цифры — удельную поверхность. Буквы после цифр обозначают структуру сажи Н — низкоструктурная, В — высокоструктурная [c.98]

    Термический крекинг проводится двумя способами. Первый способ заключается в том, что сырье крекируют до образования жидкого крекинг-остатка (крекинг-мазута), во втором способе конечным продуктом крекинга является кокс. В первом случае высококипящие составные части продуктов крекинга, кипящие выше температуры кипения бензина, удаляются и не возвращаются на крекинг во втором случае все фракции, кипящие выше температуры кипения бензина, возвращаются в крекинг-установку и там после нагревания в специальном сосуде остаются до образования кокса. [c.18]

    Во втором способе термического крекинга под давлением предусматривается работа до образования кокса [4]. Способ состоит в том, что склонный к образованию кокса остаток, включающий все кипящие выше температуры кипения бензина составные части, из испарителя возвращается в крекинг-процесс. Реакционная камера в этом случае выполняется так, чтобы обеспечить возможность очистки ее от отлагающегося в ней кокса. Продуктами крекинга являются здесь бензин, газ и кокс. В качестве исходного сырья [c.39]

    В табл. IV. 10 приведено качество получаемого термического газойля из вакуумной колонны и смеси термических газойлей из первой и второй колонн. [c.226]

    При легком термическом крекинге с целью углубления отбора газойлевой фракции вторая ступень разделения крекинг-остатка осуществляется в вакууме (рис. IV-16). [c.226]

    Керосиновая фракция с 31-ой или 29-ой тарелок основной колонны поступает в первую секцию отпарной колонны 9. Пары из отпарной колонны 9 направляются в основную колонну 8 под 30-ую тарелку. С низа первой секции отпарной колонны 9 фракция прокачивается через холодильник в мерники. С 14-ой тарелки основной колонны 8 во вторую секцию отпарной колонны 9 отводится флегма дизельного топлива. Пары из этой секции возвращаются под 16-ую тарелку основной колонны, а дизельное топливо с низа отпарной колонны насосом через теплообменники и холодильники откачивается в мерники. В низ основной колонны 8 и в отдельные секции отпарной колонны 9 подается перегретый водяной пар. Мазут — остаток основной ректификационной колонны 8 забирается горячим насосом и прокачивается через печь 13 в вакуумную колонну 12. В случае временного отключения вакуумной части мазут направляется на другие процессы, в частности на термический крекинг. Остальные технологические узлы установки — вакуумная перегонка мазута, стабилизация, абсорбция и выщелачивание компонентов светлых продуктов — работают по описанной выше схеме установки АВТ производительностью 1,0 млн. т/год. Главным аппаратом установки является основная ректификационная колонна диаметром 3,8 м с 40 тарелками желобчатого типа. Из них шесть расположены в отгонной части, а 34 в концентрационной. В колонне осуществлено два циркуляционных орошения с отбором флегмы. [c.88]


    В этом процессе исключена термическая ступень, а каталитические ступени осуществляются, как в процессе Клауса, но при более высоких температурах. Кислый газ подогревается, смешивается с избытком воздуха и поступает в каталитический конвертор первой ступени, на выходе из которого температура поддерживается в интервале от 480 до 510 °С. Полученные продукты состоят из паров серы и некоторого количества H2S. Этот поток проходит через конденсатор серы, охлаждаясь водой до 150°С, за счет чего получается пар низкого давления. Сконденсировавшаяся сера поступает на склад, а газы, смешиваясь с подогретым воздухом и некоторым количеством горячих газов из первой ступени, направляются на вторую каталитическую ступень. Общая конверсия сероводорода в серу не превышает при этом процессе 85%. [c.188]

    При сжигании остаточных топлив кроме снижения образующихся отложений большое значение имеет изменение их состава, поскольку в этих отложениях присутствуют вещества, вызывающие коррозию стали. В состав этих веществ входят, в частности, ванадий и натрий первый —в основном в виде растворимых в нефти металлоорганических соединений типа порфириновых комплексов, а второй — в виде галогенидов, сульфатов и др. При термическом разложении и окислении этих сое- [c.177]

    Рассмотрение данных, приведенных в табл. 24, позволяет прийти к выводу, что бензины термического крекинга содержат значительные количества фракций, необходимых для получения спиртов Се—Сд оксосинтезом. Нужно отметить также заметные колебания содержания непредельных углеводородов в целевых фракциях бензинов термокрекинга. Эти колебания определяются режимом работы установок термокрекинга. В процессе оксосинтеза наиболее целесообразным является использование фракций, содержащих максимальное количество непредельных углеводородов. С этой точки зрения весьма перспективным было бы использование фракций, полученных из бензинов термокрекинга восточных нефтей. Однако в последние годы большинство установок термического крекинга на заводах Поволжья и Башкирии переведены на более мягкий режим процесса, заключающийся в том, что в первой печи установки проводится термический риформинг лигроина, во второй печи — термическая обработка гудрона. Такое изменение привело к понижению содержания непредельных в бензинах термического крекинга восточных нефтей. С другой стороны, высокое содержание серы в этих бензинах также является весьма нежелательным явлением, в значительной мере осложняющим получение спиртов, пригодных для пластификаторов. Это вынуждает вводить специальную подготовку бензинов, полученных термическим крекингом восточных нефтей, для процесса оксосинтеза. [c.103]

    В статье приведен литературный и патентный обзор по получению и применению карбоната стронция, производство которого в последние годы за рубежом переживает период интенсивного развития. Промышленное производство 10сн0вывается на двух принципиально различных методах садовом и термическом. Второй метод обладает рядом преимуществ схема менее сложна а предполагает непрерывность осуществления процесса. Сравнительно малое количество сведений по 1практическому осуществлению этого метода делает необходимы.м проведение исследований с целью их получения. [c.124]

    Каталитический крекинг отличается двумя важными особенностями. Во-иервых, получаемый этим способом бензин, как уже указывалось выше, по антидетонационной стойкости н по химическому составу значительно лучше бе1гзн1га термического крекинга нрн одном и том же исходном сырье. Во-вторых, образующийся нрн каталитическом крекинге газ содержит значительно меньше метана и фракции С2 и очень богат углеводородами с 3. 4 и 5 атомами углерода. Превращение за один проход через крекинг-печь здесь мол ет быть значительно выше, чем при термическом крекинге, вследствие меньшего образования кокса. [c.40]

    Во-вторых, получением высокомолекулярных относительно однородных олефинов термическим крекингом парафина. Парафин из нефти, полученный синтезом Фишера-Тропша или из бурого угля, разлагается при высоком нагреве (пример 550°) в присутствии перегретого водяного пара. Образующиеся при этом олефины смешаны с парафинами, так как нри крекинге парафиновых углеводородов образуются олефины и парафины, причем сумма атомов С олефина и парафина равна числу атомов С исходного парафина. [c.61]

    Обш ие сведения. Олефнны могут полимеризоваться двумя путями во-первых термически, путем нагревания до высокой температуры под давлением н, во-вторых, нагреванием до умеренных температур в присутствии нодходяш его катализатора. [c.62]

    Остаток ИЗ первой (бензольно-толуольной колонны) поступает в первую-этилбензольную колонну, где при остаточном давлении 35 мм отделяется этилбензол (с примесью около 1% стирола), возвращаемый па установку дегидрирования. Остаток первой этилбензольной колонны поступает на вторую колонну, в которой от стирола отделяются носледние остатки этилбензола. Остаток из второй этилбензольной колонны поступает далее в периодически работающую при 35 мм колонну тонкой ректификации. Чистый стирол отходит при температуре верха колонны 57 , температура низа колонны 74°. В эту колонну сверху поступает стабилизирующий раствор в виде гидрохинона или ге-т/)ет-бутилпирокатехипа. Благодаря этому термическая полимеризация стирола полностью предотвращается. Эти ингибиторы применяются также для стабилизации стирола в условиях хранения. Необходимая концентрация составляет 10 частей ингибитора на 1 млн. частей стирола. [c.238]


    Особо следует отметить результаты, полученные при 300°, так как при этой температуре термическая стойкость первичного изобутилхло-рида и втор-н-бутилхлорида приблизительно одинакова. Хотя первичные [c.217]

    По одному из способов сульфохлориды переводят в сульфофториды, которые в отличие от них обладают исключительной термической устойчивостью. В результате моно- и дисульфофториды с успехом отделяются друг от друга ректификацией. Сульфофториды получают из сульфохло-Р Идов относительно легко и с хорошими выходами при нагревании последних с концентрированными водными растворами фтористого калия [145]. В основу второго способа разделения моно- и дисульфохлоридов положено наблюдение, что вследствие более высокого содержания кислорода ди- и полисульфохлориды уже не растворяютс , в пентане. Поэтому ди- И полисульфохлориды от продуктов монозамещения можно отделить, добавив к их смеси относительно большое количество пентана и перемещав все вместе при охлаждении до —30°. В этих условиях моносульфохлориды растворяются еще легко, в то время как ди- и полисульфохлориды полностью не растворимы [146]. [c.598]

    Гегеролитический разрыв отличается от разрушения связи при распаде молекулы на атомы и радикалы. В последнем случае разрушается связывающая электронная пара и процесс называется гомо-литическим. В соответствии со сказанным следует различать процесс диссоциации и процесс ионизации, в случае НС1 первый наблюдается при его термическом распаде на атомы, второй — при распаде на ионы в растворе. [c.81]

    На первой стадии процесса СО избирательно реагирует с железосодержащим сырьем с получением Fe( O) в, при этом происходит значительная очистка от микропримесей других металлов. На второй стадии при термическом разложении карбонила образуются чистое железо и СО, который повторно используется в процессе. [c.585]

    Еще в ранний период создания крекинг—установок было установлено, что при однократном крекинге не удается достичь требуемой глубины термолиза тяжелого сырья из-за опасности закоксовывания змеевиков печи и выносных реакционных аппара — тов. Большим достижением в совершенствовании их технологии являлась разработка двухпечных систем термического крекинга, в которых в одной из печей проводится мягкий крекинг легко креки — руемого исходного сырья, а во второй — жесткий крекинг более термостойких средних фракций термолиза. На современных уста — новках ТКДС сохранен оправдавший себя принцип двухкратного селективного крекинга исходного сырья и рециркулируемых средних фракций крекинга, что позволяет достичь требуемой глубины ароматизации термогазойля. [c.47]

    Процесс термического окисления H S осуществляют в основ — Hof топке, смонтированной в одном агрегате с котлом — утилизато — ром. Объем воздуха, поступающего в зону горения, должен быть строго дозирован, чтобы обеспечить для второй стадии требуемое соотношение SO и H S (по стехиометрии реакции 2 оно должно быть 1 2). Температура продуктов сгорания при этом достигает 1100 — 1300 °С в зависимости от концентрации H S и углеводородов в газе. [c.165]

    Развитие нефтеперерабатывающей промышленности в США после второй мировой войны характеризуется непрерывным повышением качества нефтепродуктов в результате широкого внедрения в технологию производства каталитических процессов — крекинга, риформинга и полимеризации. Ведущим продуктом нефтеперерабатывающих заводов США является автомобильный бензин. В среднем он составляет почти 50% всей продукции нефтезаводов. В технологии производства масел не произошло каких-либо заметных изменений. Основное внимание уделяется разработке и применению различных присадок к маслам с целью улучшения их качества. Работы в области подготовки нефти к переработке посвящены главным образом улучшению термического и электрического способов обезвоживания и обессоливания нефтей. На всех вновь сооружаемых заводах, как правило, строятся низкочастотные обессоливающие установки типа установок фирмы Petri o. Отдельные фирмы отказываются от строительства самостоятельных электрообессоливающих установок вместо них в схему установок включается электродегидратор с использованием тепла горячих потоков (дистиллятов) для предварительного нагрева нефти. Наряду с термическими и электрическими методами подготовки нефти развивается также процесс химического обессоливания, позволяющий удалять из сырых нефтей неорганические соли и частично следы мышьяка, металлов и других примесей. [c.36]

    Время полупревращения для реакции второго порядка отличается от соответствующей величины [уравнение (11.4.6)1 для реакции первого порядка тем, что здесь зависит от начальной концентрации. Как будет покапано позже, это дает простое экспериментальное правило для нахождеппя порядка реакции. Типичными среди примеров реакций второго порядка типа 1 являются газофазное термическое разложение иодистого водорода (2Н1 Н2- -f- I2) [7], газофазное термическое разложение NO2 (2N02->-2N0-l- О2) [8], жидкофазное разложение иона СЮ (2С10- 2С1--Н О2) [9] и димеризация циклонентадиена в газовой [10] или жидкой фазе [И]. [c.24]

    Пренебрегая в данном случае знаменателями, которые учитывают ингибирование, можно в этих выражениях представить числители как произведения двух множителей, причем первый отвечает соответственно стационарной концентрации атомов Вг(ЛГ,,2Вг2) 2 и IJk2Ш) , а второй — суммарной скорости образования НВг относительно удельной концентрации атомов брома. В ценных реакциях, которые до сих пор рассматривались, цикл состоял только из двух стадий одной быстрой и одной медленной. В выражение для суммарной скорости входит лишь константа кз, отвечающая медленной цепной стадии. Этой стадией является отрыв атома водорода Вг - - КН Л- НВг -Ь К. Для термической реакции суммарная константа скорости /сг= кзК (1 равна произведению константы скорости бимолекулярной реакции кз и константы равновесия1,2- Их энергия активации, которая является эксперименталь- [c.298]

    В термической полимеризации, когда скорости Л второго порядка по (М), обычно откладывают зависимость 1/п от (3)/(М), что дает прямую линию с наклоном к /кр отсекаемый отрезок в этом случае 1)аиеп 2к1к() кр, где Д = 2/с,(М) . [c.521]

    Процесс трсхступенчатыйз в первой — вакуумной —ступени отбирается 35—41 %, считая на гудрон, солярового дистиллята во второй ступени остаток (удельного веса 1,0366) от вакуумной перегонки гудрона подвергается легкому термокрекингу и в третьей ст пени получаемые продукты подвергаются двукратному испарению в атмосферном испарителе и во второй вакуумной колонне. Выход бензина о концом кипения 205° составляет 9%. До поступления в две параллельно работающие трубчатые аечи легкого термического крекинга к остатку добавляется рециркулирующий соляровый дистиллят (си. рис. 23), [c.58]

    I — трубчатая печь первой ступени 2 — вакуумная колонна первой ступени з — трубопроводы для циркуляционного орошения и отвода солярового дистиллята 4 — паровой котеп-утилизатор 6 — трубчатые печи для легкого термического крекш1га остатка е — испаритель — вторая вакуумная колонна — трубопроводы к вакуум-соэдаю-- щим устройствам. [c.59]

    Несомненный интерес представляет исследо1вание механизма Сб-дегидроциклизации н-гексана в присутствии Pt, нанесенной на некислый АЬОз [70]. Считают, что ароматизация н-гексана проходит двумя путями во-первых, через последовательное образование алкенов, алкадиенов, алкатриенов с последующей термической циклизацией последних и, во-вторых, путем прямой ароматизации к-гексана. При этом отмечается важная роль водорода при протекании реакции и прямая зависимость механизма ароматизации от парциального давления водорода в реакционной смеси. [c.243]

    Двумя хорошо известными вариантами термического риформипг-процесса являются полиформинг-процесс [4, 21] и процесс полиформного крекинга [4] в этих процессах имеет место совместная конверсия лигроина и углеводородных газов. В первом процессе лигроин растворяет углеводороды Сз и С4, образовавшиеся в процессе риформинга, и затем смесь подается в змеевик трубчатой печи. Во втором лигроин и поток рециркулирующего газа нагреваются в двух отдельных змеевиках и только затем соединяются в третьем для окончательной конверсии. В том случае, если применяются аналогичные режимы и сырье, оба процесса дают примерно равные выходы бензинов с подобными свойствами. [c.46]

    Пиролиз этилена до ацетилена. Молера и Стэббс [50] нашли, что термическое разложение этилена в интервале температур от 593 до 743° С и давлении 250 мм рт. ст. является реакцией первого порядка, а при более высоких давлениях — реакцией второго порядка. Ацетилен не является основным продуктом реакции при температурах ниже 800° С и, по-видимому, вообще не образуется при температурах ниже 600° С [8, 15, 38]. Нет сомнения в том, что при более низких температурах и более высоких давлениях полимеризация этилена преобладает над его разложением. При более высоких температурах полимеризация его проявляется на самое короткое время в виде уменьшения объема газа. Вскоре начинает преобладать процесс разложения этилена, полностью маскирующий реакцию полимеризации. Разложение преобладает при температурах выше 800° С. При 1400° С не наблюдается уменьшения объема даже на самое короткое время [93]. [c.81]

    До возникновения повышенного спроса на стирол в связи с принятой с началом войны в США программой производства синтетического каучука его получали в небольшом количестве путем дегидрирования этилбензола. Для производства бутадиена в нефтяной промышленности применялись процессы высокотемпературного термического крекипга лигроинов и газойлей. При этом получались также другие ценные диолефины, такие как изопрен и циклопентадиен. Выходы бутадиена составляли всего лишь от 2 до 5% на сырье. К концу второй мировой войны процесс термического крекинга был также использован для получения так называемого qui kie бутадиена. Однако большая часть бутадиена получалась в результате дегидрирования бутенов. Применение бутана п тсачестве сырья для получения бутадиена составляло лишь небольшую долю намеченной программы. Широкое применение нашел сравнительно дорогой процесс превращения этилового спирта в бутадиен. Разработанный в Германии процесс получения бутадиена из ацетилена не был принят. После рассмотрения всех процессов правительство США утвердило план производства бутадиена, приведенный в табл. 1. [c.189]

    Следует подчеркнуть, что поведение чистого соединения в процессе термического разложения не является достаточным критерием для суждения о его поведении в реакционной системе углеводород — кислород. Николаз и Леторт показали, что присутствие 0,04% кислорода вызывает разложение уксусного альдегида, протекающее с измеримой скоростью при таких низких температурах (порядка 200° С), когда термическое разложение в отсутствие кислорода происходит настолько медленно, что не может быть измерено [46]. Одна молекула кислорода способна индуцировать разложение от 100 до 300 молекул альдегида. Кроме того, окисление одного вещества может вызвать окисление или разложение второго вещества в таких условиях, при которых это второе вещество и кислород обычно не реагируют между собой. Это явление часто наблюдается для смесей углеводородов с кислородными соединениями. [c.343]

    Процесс термической этерификации в этом случае осуществляется в двух последовательно работающих четырехсекциопных реакторах, снабженных обогревающими змеевиками в каждой секции. Реагирующие компоненты подаются в реактор нагретыми до температуры реакции. Нагрев осуществляется в специальных подогревателях парами органических теплоносителей. Для предотвращения испарения в первом реакторе поддерживается давление 8,5 ат, а во втором реакторе 6,5 ат. Температура процесса этерификации поддерживается на уровне 200° С. Отгонка эфира от избыточного бутанола, рафинация и промывка эфира и ряд других вспомогательных операций осуществляются в непрерывно действующих аппаратах. Условия рафинации эфира температура процесса - 90° С, время контактирования щелочи с эфиром 30 мин. Условия разложения натровых солей кислот (рафинационной щелочи) температура разложения +60° С, время контактирования 30 мин. [c.98]

    Окисленный парафин освобождается в шлаыоотстойниках от катализаторного шлама п подается в промывную колонну, где от него отмываются низкомолекулярные водорастворимые кислоты. После промывкп окисленный продукт подается на омыление. Омыление производится в две ступени. На первой ступени синтетические жирные кислоты при температуре 90—95° С нейтрализуются 25%-ным раствором соды, на второй ступени осуществляется доомыление 30%-ным раствором едкого натра. Для отделения неомыляемых нейтрализованный оксидат проходит последовательно отстойники, автоклавы и термическую печь. В отстойниках путем простого отстоя отделяется 25—30% неомыляемых. В автоклавах при температуре 160—180° С и давлении 20 am дополнительно отделяется 30—40% неомыляемых. Окончательное отделение неомыляемых осуществляется в термической печи при температуре 320—340° С и повышенном давлении. Неомыляемые, полученные в результате термической обработки, известны в заводской практике под названием неомыляемых-П, в отличие от неомыляемых-0 и неомыляемых-1, получаемых при отстое и обработке в автоклавах омыленного оксидата. Неомыляемые продукты возвращаются на повторное окисление. На Шебекинском комбинате на повторное окисление возвращаются только нулевые и первые неомыляемые, неомыляемые-И направляются на извлечение высших жирных спиртов. [c.150]

    В первом издании пастояш ей книги (1928 г.) излагались научные и технические основы нефтепереработки, которая к этому времени мало изменилась с момента своего возникновения в 1855 г., когда В. Силлимэн впервые онисал свойства важнейших нефтепродуктов и методы их получения. При подготовке второго издания (1942 г.) книга практически была написана заново, так как нефтеперерабатывающая промышленность претерпела существенные качественные изменения основу ее к этому времени составляли термический крекинг и разделение углеводородов с помощью селективных растворителей. [c.8]

    Второй метод основан на разделении масляной фракции на со-ч тавляющие классы углеводородов настолько полно, насколько это возможно. Для этого используются в надлежащей последовательности все имеющиеся физические методы перегонка под вакуумом, адсорбция, карбамидная очистка, экстракция растворителями, термическая диффузия. [c.26]


Смотреть страницы где упоминается термин Термический второй: [c.52]    [c.8]    [c.209]    [c.244]    [c.353]    [c.162]    [c.418]    [c.4]    [c.117]    [c.142]    [c.271]    [c.313]    [c.106]    [c.111]    [c.54]   
Химия (1979) -- [ c.151 ]




ПОИСК







© 2025 chem21.info Реклама на сайте