Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термический первый

    Термический крекинг проводится двумя способами. Первый способ заключается в том, что сырье крекируют до образования жидкого крекинг-остатка (крекинг-мазута), во втором способе конечным продуктом крекинга является кокс. В первом случае высококипящие составные части продуктов крекинга, кипящие выше температуры кипения бензина, удаляются и не возвращаются на крекинг во втором случае все фракции, кипящие выше температуры кипения бензина, возвращаются в крекинг-установку и там после нагревания в специальном сосуде остаются до образования кокса. [c.18]


    Изготовление хлорсеребряных электродов. Различают три типа электродов электролитический, намазной и термический. Первый получают путем осаждения серебра на платиновую проволоку, пластинку или сетку. Поверхностный слой осажденного серебра после тщательной промывки переводят затем в хлорид серебра [c.248]

    Продукты реакции разделяются в три ступени по схеме неглубокой переработки и в четыре ступени по схеме глубокой переработки (рис. IV-15). По схеме а неглубокой переработки продуктовая газожидкостная смесь углеводородов после блока термического крекинга поступает в испаритель высокого давления для грубого разделения на паровую и жидкую фазы при избыточном давлении 1 МПа. Паровая фаза поступает затем на разделение в ректификационную колонну 3, а жидкая фаза — в колонну 4 — испаритель низкого давления. Ис.ходное сырье термического—крекинга в жидкой фазе подается в низ колонны 5 и на верх колонны 4, где оно нагревается потоком пара продуктов реакции из блока 1. Разделение сырья на два потока позволяет более полно использовать избыточное тепло паров колонн 3 и 4. Газойлевые фракции из середины колонны 4 используют как сырье печи глубокого крекинга. Верхние продукты колонн 3 и 4 поступают на стабилизацию и разделение на бензин и газойлевые фракции. Давление в колонне 3 0,8—1,2 МПа, в колонне 4 0,15—0,3 МПа. Повышенное давление в первой колонне позволяет поддерживать высокие температуры керосино-газойлевой фракции и остатка, на- [c.225]

    Керосиновая фракция с 31-ой или 29-ой тарелок основной колонны поступает в первую секцию отпарной колонны 9. Пары из отпарной колонны 9 направляются в основную колонну 8 под 30-ую тарелку. С низа первой секции отпарной колонны 9 фракция прокачивается через холодильник в мерники. С 14-ой тарелки основной колонны 8 во вторую секцию отпарной колонны 9 отводится флегма дизельного топлива. Пары из этой секции возвращаются под 16-ую тарелку основной колонны, а дизельное топливо с низа отпарной колонны насосом через теплообменники и холодильники откачивается в мерники. В низ основной колонны 8 и в отдельные секции отпарной колонны 9 подается перегретый водяной пар. Мазут — остаток основной ректификационной колонны 8 забирается горячим насосом и прокачивается через печь 13 в вакуумную колонну 12. В случае временного отключения вакуумной части мазут направляется на другие процессы, в частности на термический крекинг. Остальные технологические узлы установки — вакуумная перегонка мазута, стабилизация, абсорбция и выщелачивание компонентов светлых продуктов — работают по описанной выше схеме установки АВТ производительностью 1,0 млн. т/год. Главным аппаратом установки является основная ректификационная колонна диаметром 3,8 м с 40 тарелками желобчатого типа. Из них шесть расположены в отгонной части, а 34 в концентрационной. В колонне осуществлено два циркуляционных орошения с отбором флегмы. [c.88]


    Для определения времени нагрева т (с) при соответствующей степени превращения вещества в первом приближении можно использовать кинетическое уравнение константы скорости реакций к термического крекинга углеводородов. [c.53]

    Крекинг термический. Первым по времени возник термич. К. он был известен еще в 19 в., однако в связи с отсутствием спроса на бензин не получил промышленного применения. Строительство промышленных установок началось в 20 гг. сначала в США, а затем в СССР. Современная нефтеперерабатывающая пром-сть применяет след, разновидности термич. К.  [c.394]

    В.Г. Шуховым был предложен проект промышленной установки для получения легких углеводородов путем термического разложения более тяжелых. Это был первый в мире проект крекинг-установки. Процесс термического расщепления молекул получил название крекинга. Крекинг-процесс проходит по следующей схеме  [c.7]

    Первые опыты по термической полимеризации пропилена [1] были проведены Ипатьевым [2], который показал, что при высоком давлении и 330—370 °С образуется, полимер следующего состава в %)  [c.241]

    Поршневые пальцы, изготовляемые из стали марки 45 или 40Х, цементации не подвергаются (операция пятая — термическая, первый переход). [c.449]

    В работе [46] предложена упрощенная модель пристенной теплоотдачи в зернистом слое. Особенностью коэффициента пристенного теплообмена в зернистом слое является то, что он отнесен к Д/ст — разнице температуры стенки и температуры, полученной экстраполяцией профиля температуры в слое на стенку [48]. Таким образом, дополнительное термическое сопротивление конвективному теплопереносу в пристенной зоне относится к бесконечно тонкой пленке на стенке коэффициент определяется как величина, обратная этому термическому сопротивлению. Разница температур Д ст вызывает дополнительный тепловой поток между стенкой и зернами, прилегающими к ней. При рассмотрении этого потока приходится отказаться от модели слоя как квазигомогенной среды и учитывать, что движущая разница температур в этом случае больше Д/ст, так как зерна имеют конечные размеры. Поскольку должен быть отнесен к Д/ст, то из термического сопротивления теплопереносу между стенкой и зернами нужно вычесть термическое сопротивление общему потоку теплоты у стенки в полосе шириной 0,5 (от стенки до центров первого ряда зерен).- В соответствии с этим получена формула [46] [c.128]

    Дополнительное преимущество этого процесса заключается в том, что устраняется необходимость нагрева исходного сырья до высокой начальной температуры, требуемой для протекания реакции. При осуществлении процесса в результате колебательного движения взвешенных зерен катализатора происходит интенсивное перемешивание и достигается практически идеальный теплообмен между поступающей свежей газовой смесью и горячими газообразными продуктами реакции, обеспечивающий достаточный нагрев исходной газовой смеси. Именно в этом свойстве и заключается особенность взвеси твердой фазы. Каталитическая активность твердой фазы проявляется лишь в первые часы работы (до графитирования зерен катализатора), а при длительной работе практически полностью отсутствует. Именно поэтому рассматриваемый метод хлорирования следует отнести к группе термических процессов. [c.170]

    Чем ниже температура термического хлорирования, тем меньше интенсивность подобных реакций присоединения хлористого водорода. Последующие реакции присоединения и отщепления хлористого водорода протекают с неодинаковой скоростью. Первая реакция протекает медленнее, вследствие чего в непревращенном пентане присутствуют амилены. Так как дегидрохлорирование остальных двух хлорпроизводных изопентана приводит к образованию триметилэтилена, очевидно, что амилены, содержащиеся в пентане, который снова возвращается в процесс, состоят гл авным 0 бразом из триметилэтилена. [c.179]

    В этом процессе исключена термическая ступень, а каталитические ступени осуществляются, как в процессе Клауса, но при более высоких температурах. Кислый газ подогревается, смешивается с избытком воздуха и поступает в каталитический конвертор первой ступени, на выходе из которого температура поддерживается в интервале от 480 до 510 °С. Полученные продукты состоят из паров серы и некоторого количества H2S. Этот поток проходит через конденсатор серы, охлаждаясь водой до 150°С, за счет чего получается пар низкого давления. Сконденсировавшаяся сера поступает на склад, а газы, смешиваясь с подогретым воздухом и некоторым количеством горячих газов из первой ступени, направляются на вторую каталитическую ступень. Общая конверсия сероводорода в серу не превышает при этом процессе 85%. [c.188]

    Глубину окисления изопропилбензола выдерживают в пределах 20—30%, так как в противном случае гидроперекись становится термически неустойчивой. Увеличение температуры в колоннах окисления сверх допустимой ведет к распаду гидроперекиси изопропилбензола со взрывом, так как начинается цепная реакция. На случай завышения температуры в колоннах окисления предусматривают блокировки, при срабатывании которых клапан на линии подачи технологического воздуха закрывается и перекрывается блокирующий клапан на линии подачи пара на первую секцию колонны окисления. [c.87]


    Сравнение схем двукратного испарения мазута по широкой масляной фракции и по остатку показывает, что первая схема является предпочтительной с точки зрения энергетических затрат. Кроме того, последующий нагрев более тяжелого сырья связан с большей опасностью его термической деструкции и требует повышенного расхода водяного пара на создание вакуума. В то же время схема двукратного испарения по остатку позволяет получить более узкие масляные фракции и понижение давления при этом требуется для более вязкого, тяжелого продукта. По приведенным же затратам схемы одно- и двукратного испарения мало различаются между собой. [c.187]

    В табл. IV. 10 приведено качество получаемого термического газойля из вакуумной колонны и смеси термических газойлей из первой и второй колонн. [c.226]

    Остаток ИЗ первой (бензольно-толуольной колонны) поступает в первую-этилбензольную колонну, где при остаточном давлении 35 мм отделяется этилбензол (с примесью около 1% стирола), возвращаемый па установку дегидрирования. Остаток первой этилбензольной колонны поступает на вторую колонну, в которой от стирола отделяются носледние остатки этилбензола. Остаток из второй этилбензольной колонны поступает далее в периодически работающую при 35 мм колонну тонкой ректификации. Чистый стирол отходит при температуре верха колонны 57 , температура низа колонны 74°. В эту колонну сверху поступает стабилизирующий раствор в виде гидрохинона или ге-т/)ет-бутилпирокатехипа. Благодаря этому термическая полимеризация стирола полностью предотвращается. Эти ингибиторы применяются также для стабилизации стирола в условиях хранения. Необходимая концентрация составляет 10 частей ингибитора на 1 млн. частей стирола. [c.238]

    Очевидно, что при термолизе углеводородного сырья будут разрываться в первую очередь наиболее слабые связи и образовываться продукты преимущественно с меньшей свободной энергией образования. Таким образом, термодинамический анализ позволяет прогнозировать компонентный состав и подсчитать равновесные концентрации компонентов в продуктах реакций в зависимости от условий проведения термических, а также каталитических процессов. Однако, компонентный состав и концентрации продуктов химических реакций в реальных промышленных процессах не всегда совпадают с результатами термодинамических расчетов. [c.15]

    Существенным недостатком теории А()рениуса является и то, что оиа не указывает причин, вызываощих ионизацию электролитов в растворах. Расчеты энергии кристаллической решетки АС,,, разрушение которой должно предшествовать появлению свободных ионов, присутствующих в растворе, показывают, что количество термической энергии ири обычных температурах слишком мало по сравнению с тем, которое надо затратит1з на раз[)ушение решетки. Одним из первых и в то >ке время одним из наиболее точных уравнений для подсчета энергии решетки считается уравнение Борна (1918)  [c.44]

    Уравнения (IV. 83) и (IV. 84) записаны для случая, когда внутренним термическим сопротивлением твердой фазы можно пренебречь, что обычно осуществляется в условиях эксперимента. Для газа можно пренебречь первым членом уравнения (IV. 83) по сравнению с первым членом уравнения (IV. 84).  [c.169]

    Паровоздушная смесь, нагреваясь до 110°С в подогревателе 5, поступает в реактор 6 с катализатором. Чтобы избежать термического разложения формальдегида, реакционные газы сразу же направляют в холодильник 7. Абсорбция формальдегида проводится в аппарате 8 водным раствором метанола. Первая стадия абсорбции является экзотермическим процессом. Поэтому при определен- [c.325]

    Для уменьшения коксоотложения в сепараторе и снижения скорости термического крекинга сырья, при котором образуется относительно низкооктановый бензин, рекомендуется не нагревать сырье в первой печи выше 450°, вводить в радиантные змеевики печи водяной нар и осуществлять непрерывную циркуляцию определенной части остатка через холодильник, чтобы температура жидкости внизу сепаратора не превышала 400°. [c.39]

    К преимуществам синтетических катализаторов по сравнению < естественными относятся значительно меньшая подверженность действию сернистых соединений, большая стойкость к термической дезактивации при высоких температурах, меньшая истираемость, лучшее качество продуктов реакции [1, 57]. Поэтому при крекинге дистиллятного сырья синтетические катализаторы применяются чаще, чем естественные, несмотря на то, что стоимость первых выше. [c.45]

    По масштабам потребления фосфорной кислоты (суммарно экстракционной и термической) первое место занимает туковая промышленность, на втором месте находится производство технических солей. Значительно увеличилось потребление фосфорной кислоты в производствах кормовых и пищевых фосфатов, а также в виде пищевой фосфорной кислоты. Экстракционная фосфорная кислота перерабатывается в основном (90,—95%) на удобрения. Что касается терм1Ической кислоты, то, в СССР на кормовые добавки и удобрения перерабатывают 55—60% ее выпуска. В США на удобрения—18—20%, [c.13]

    Методам деалкилирования и гидродеалкилирования для получения моноароматических углеводородов из алкилароматиче-скнх было посвящено много работ. В наиболее важных иеследова-лись (или сопоставлялись) два направления деалкилирования каталитическое и термическое. Первое время внедрение термического деалкилирования встречало затруднения, обусловленные трудностью подбора материалов для осуществления процесса, — ведь температура в зоне реакции достигает 800 °С. Поэтому велись (и ведутся) разработки каталитического процесса. Из этих работ заслуживает внимания работа Лемана [64], посвященная гидродеалкилированию алкилароматических соединений. В ней указывается, что гидродеалкилирование алкилбензолов на никелевых катализаторах протекает обычно в менее жестких условиях, чем на других [c.326]

    Удельное значение протекающих одновременно реакций крекинга а дегидрирования зависит в первую очередь от числа атомов С в исходном материале. В то время как этан при высоком нагреве превращается практик чески только в этилен и водород и, следовательно, здесь в основном идет реакция термического дегидрирования, при нагреве пропана уже большее значение имеет реакция крекинга с образованием этилена и метана. При нагреве бутана до высокой температуры образуется совсем немного бутена. Бутан расщепляется главным образом на этилен и этан или, соответственно на пронен и метан. Изобутан, напротив, примерно на 50% превращается в изобутен. [c.47]

    Обш ие сведения. Олефнны могут полимеризоваться двумя путями во-первых термически, путем нагревания до высокой температуры под давлением н, во-вторых, нагреванием до умеренных температур в присутствии нодходяш его катализатора. [c.62]

    При выборе основных параметров разделения (Р и ) исходят в первую очередь из экономичных условий разделения давление и температура колонн вверху должны быть такими, чтобы верхний продукт можно было сконденсировать водой, воздухом или имеющимся на установке недорогим хладоагентом (обычно пропаном). В то же время температура должна быть достаточно низкой с тем, что нижний продукт можно было испарять с помощью имеющихся средств подогрева. При перегонке нефти и мазута необходимо также следить за тем, чтобы максимальная температура нагрева была не выше температуры термического разложения продуктов и чтобы она была не выше критической температуры нижнего продукта. Прн разделсник нефти и широких нефтяных фракций лучше поддерживать как можно меньшее давление, близкое к атмосферному, с тем, чтобы обеспечить наиболее высокую эффективность разделения смеси. При разделении легких углеводородных газов, обладающих высокой летучестью, часто используют пониженное давление, охлаждая верх колонны специальными хладоагентами. [c.78]

    Другого рода проблемы устойчивости возникают в реакторах с неподвижным слоем катализатора в связи с процессами тепло- и массопереноса от потока реагирующих веществ к поверхности частиц катализатора. Это вопросы термической устойчивости стационарного режима отдельной частицы. Мы рассмотрим только простейший случай. Предположим, что вещество А вступает в реакцию первого порядка и внутридиффузионное торможение процесса отсутствует. Тогда концентрация вещества А у активной поверхности (с) будет отличаться от его концентрации в объеме (с), и скорость реакции будет определяться квазигомогепной кинетической зависимостью (см. раздел VI.2)  [c.285]

    Гегеролитический разрыв отличается от разрушения связи при распаде молекулы на атомы и радикалы. В последнем случае разрушается связывающая электронная пара и процесс называется гомо-литическим. В соответствии со сказанным следует различать процесс диссоциации и процесс ионизации, в случае НС1 первый наблюдается при его термическом распаде на атомы, второй — при распаде на ионы в растворе. [c.81]

    На первой стадии процесса СО избирательно реагирует с железосодержащим сырьем с получением Fe( O) в, при этом происходит значительная очистка от микропримесей других металлов. На второй стадии при термическом разложении карбонила образуются чистое железо и СО, который повторно используется в процессе. [c.585]

    Принятая в нашей стране маркировка саж основана на спо — собч их производства, виде используемого сырья и величине удельной поверхности. Первая буква марки саж указывает на способ производства П — печная, Т — термическая, Д — диффузионная, следующая буква означает сырье М — жидкое (масло), Г — газовое цифры указывают величину удельной поверхности. Например, сажа марки ПМ—100 означает, что она получена печным способом из жидкого сырья, имеет удельную поверхность 100 м /г. [c.71]

    Минеральное масло - это многокомпонентная система, застывание которой является сложным и многостадийным процессом, зависящим от взаимодействия отдельных компонентов, их взаимного растворения и др. В минеральном масле при понижении температуры в первую очередь зарождаются и растут кристаллы парафина. С появлением мелких кристаллов масло мутнеет и эта температура называется температурой помутнения loudpoint). В дальнейшем кристаллы парафина растут, соединяются, слипаются и в конечном итоге образуют кристаллический каркас, масло становится неподвижным, желеобразным. Таким образом, температура застывания фактически является температурой желеобразования. Между кристаллическим каркасом масло еще остается жидким и при встряхивании или перемешивании текучесть всей массы масла может частично восстановиться. Такой процесс затвердевания, как специфический процесс кристаллизации, зависит от скорости охлаждения и от термической и механической предыстории масла (низкотемпературного режима, интенсивности и продолжительности принудительного течения, в интервале времени до измерения температуры застывания). Поэтому при определении этой температуры требуется строгое соблюдение предписанной процедуры охлаждения и выдержки жидкости. [c.38]

    Термический крекинг твердых парафинов был первым промышленным процессом производства высших а-олефинов, но он не позволял получать сг-олефины высокого качества из-за присутствия большого количества примесей, в частности днолефи-иов и ароматических углеводородов. Этот процесс, хотя и в небольших масштабах, применяют в настоящее время. Он отличается большим расходным коэффициентом нормальных [c.160]

    Время полупревращения для реакции второго порядка отличается от соответствующей величины [уравнение (11.4.6)1 для реакции первого порядка тем, что здесь зависит от начальной концентрации. Как будет покапано позже, это дает простое экспериментальное правило для нахождеппя порядка реакции. Типичными среди примеров реакций второго порядка типа 1 являются газофазное термическое разложение иодистого водорода (2Н1 Н2- -f- I2) [7], газофазное термическое разложение NO2 (2N02->-2N0-l- О2) [8], жидкофазное разложение иона СЮ (2С10- 2С1--Н О2) [9] и димеризация циклонентадиена в газовой [10] или жидкой фазе [И]. [c.24]

    Аткинсона [94]. Первые авторы нашли, что реакция экзотермичпая (ДН=—50 ккил/маль) и что реакцию ингибирует продукт С4Гв. Поеледнео явление, несомненно, вызвано охлаждающим действием этого соединения. Поэтому константы скорости и энергии активации могут быть ошибочными из-за этого термического эффекта. [c.269]

    Пренебрегая в данном случае знаменателями, которые учитывают ингибирование, можно в этих выражениях представить числители как произведения двух множителей, причем первый отвечает соответственно стационарной концентрации атомов Вг(ЛГ,,2Вг2) 2 и IJk2Ш) , а второй — суммарной скорости образования НВг относительно удельной концентрации атомов брома. В ценных реакциях, которые до сих пор рассматривались, цикл состоял только из двух стадий одной быстрой и одной медленной. В выражение для суммарной скорости входит лишь константа кз, отвечающая медленной цепной стадии. Этой стадией является отрыв атома водорода Вг - - КН Л- НВг -Ь К. Для термической реакции суммарная константа скорости /сг= кзК (1 равна произведению константы скорости бимолекулярной реакции кз и константы равновесия1,2- Их энергия активации, которая является эксперименталь- [c.298]

    Как уже отмечалось, эффективность уделения серы зависит от термоустойчивости сырья. Оценка термической устойчивости нефтяных остатков также может быть сделана на базе аналогичных экспериментов по изучению влияния объемной скорости подачи сырья и температуры,, как в описанном выше примере. Для получения данных по глубине деструкции наряду с определением серы следует определять выход дистиллятных фракций. Обычно в качестве исходных данных используют выход фракций, перегоняющихся в пределах н. к. - 350 °С. Для расчета кинетических параметров реакций термодеструкции может быть использовано также уравнение первого порядка  [c.75]

    Перв шачальная стоимость установки каталитического крекинга выше сюимости установки термического крекинга той же производительности. [c.13]

    Легкий термокрекинг мазута и испарение под вакуумом крекинг-остатка (рис. 21). Переработка сырья в каждом из первых грех вариантов завер- , шается процессом легкого Мазут термического крекинга тяжелого остатка. В четвертом варианте в противоположность предыдущим этот процесс является головным. Вначале осуществляется легкий термический крекинг мазута, а в конце — вакуумная перегонка крекинг-остатка. [c.57]

    Процесс трсхступенчатыйз в первой — вакуумной —ступени отбирается 35—41 %, считая на гудрон, солярового дистиллята во второй ступени остаток (удельного веса 1,0366) от вакуумной перегонки гудрона подвергается легкому термокрекингу и в третьей ст пени получаемые продукты подвергаются двукратному испарению в атмосферном испарителе и во второй вакуумной колонне. Выход бензина о концом кипения 205° составляет 9%. До поступления в две параллельно работающие трубчатые аечи легкого термического крекинга к остатку добавляется рециркулирующий соляровый дистиллят (си. рис. 23), [c.58]


Смотреть страницы где упоминается термин Термический первый: [c.424]    [c.141]    [c.41]    [c.8]    [c.110]    [c.209]    [c.83]    [c.75]   
Химия (1979) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика последовательных гомогенных реакций первого порядка и ее приложение к расчету выходов бензина при термическом крекинге и деструктивной гидрогенизации

Оказание первой помощи при термических ожогах



© 2025 chem21.info Реклама на сайте