Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена в синтезах

    Таким путем из этилена получают окись этилена — исключительно важный промежуточный продукт для промышленности алифатического синтеза. Реакцию этилена с хлорноватистой кислотой можно осуществлять также в условиях образования последней, пропуская одновременно хлор и этилен через воду (процесс Гомберга [16]). По уравнению [c.183]


    Пытаясь рационализировать процесс синтеза этилового алкоголя, применяя те же кислотные скрубберы, мы изучали условия протекания реакции между этиленом и серной кислотой, не прерывая процесс и основываясь на принципе работы батареи реакционных аппаратов [41. Ока алось, что, используя любые варианты работы скрубберов, но не изменяя их конструкции, нельзя достигнуть одновременного снижения расхода серной кислоты и увеличения коэффициента использования этилена в газе (табл. 1). Из данных табл. 1 видно, что с понижением расхода кислоты на единицу спирта выход последнего падает. Эта закономерность подтверждает абсолютную неприменимость скрубберов в качестве реакционных аппаратов в технологическом процессе синтеза. [c.26]

    Для производства полимерных материалов необходимы следующие непредельные углеводороды этилен, пропилен, бутилен, пентен, ацетилен, пропин, пропа-диен, бутадиен и др., а также синтез-газ (окись углерода и водород) и чистый водород. Исходными веществами являются природные и попутные газы, нефть, твердые горючие ископаемые и продукты их переработки. [c.7]

    Наряду с газофазным окислением этилена в окись этилена известны методы жидкофазного синтеза. В частности, предложено использовать ртутно-этиленовый комплекс, гидролизуемый в окись этилена или окислять этилен в растворе дибутилфталата на Си- или Ад-катализаторе. [c.283]

    Этилен, этен СНа=СН2 — бесцветный газ, горящий на воздухе коптящим пламенем. Щи око применяется для синтеза различных органических веществ этилового спирта, стирола, галогенопроизводных, полиэтилена и т. д. Кислородно-этиленовым пламенем можно резать и сваривать металлы. С воздухом этилен образует взрывоопасные смеси. [c.73]

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    Реакции, протекающие с перегруппировками. Реакции магнийорганиче-ских соединений с окисями этиленов протекают более вяло, чем с карбонильными соединениями [280, 281]. Окись этилена может применяться для синтеза первичных спиртов например, -гексиловый спирт может быть получен из окиси этилена и бромистого бутилмагния [282]. Хотя продукт взаимодействия окиси с магнийорганическим соединением соответствует в некоторых, случаях простой реакции раскрытия окисного цикла, однако в общем эта реакция обычно сопровождается перегруппировками. [c.41]

    Технические газы — водород, азот, кислород, окись и двуокись углерода, углеводороды (метан, этилен и др.) или смеси их водород и окись углерода (так называемый синтез-газ), водород и азот и пр.— применяются для синтеза важнейших продуктов химической промышленности аммиака, мочевины, метилового и других спиртов, углеводородов, синтетического бензина, цианамида кальция и т. д. Технические газы производятся в огромных количествах. [c.81]

    Циклические кетоны. При облучении циклических кетонов ультрафиолетовым излучением образуются окись углерода и некоторые углеводороды [ИЗ—115]. Так, циклогексанон дает окись углерода и пентаметиленовый бирадикал, который в основном хотя и изомеризуется до циклопентана и пентена-1, однако распадается также с образованием небольших количеств этилена и пропилена 115]. Циклопентанон дает окись углерода, этилен и циклобутан. Выход циклобутана составляет 38%. При учете трудностей, возникающих при получении циклобутана другими методами, эта реакция может найти применение как метод синтеза циклобутана [116]. [c.256]

    Выходящие из сепаратора пары и газы поступают в колонну, в верху которой поддерживают температуру около ЮО С. В этой колонне разделяются жидкие продукты, конденсирующиеся в пределах 300—100°С высококипящие фракции, отбираемые с низа колонны, смешиваются с циркулирующим закалочным маслом. Тепло газа используется в котле-утилизаторе. Фракция с высоким содержанием нафталина выводится с тарелки посредине высоты колонны. Низкокипящие фракции отбирают с верха колонны вместе с газом и конденсируют в конденсаторе вместе с псевдоожи-жающим водяным паром. Легкая фракция, состоящая главным образом из легких ароматических углеводородов, отделяется от воды в сепараторе и возвращается в верх ректификационной колонны избыток ее отбирается в виде побочного продукта процесса. Ие-сконденсировавшийся газ направляется на газоразделительную установку, где при низкой температуре выделяются основные продукты пиролиза этилен, пропилен и фракция С4 с высоким содержанием бутадиена и побочные продукты водород, окись углерода и метан, идущие на производство синтез-газа. [c.223]

    Этилен. В нефтехимических синтезах в наибольших количествах используется этилен. Из него получают этиловый спирт, окись этилена, полиэтилен, стирол, ди.хлорэтан и другие продукты. Основная масса этилена в ближайшие годы будет перерабатываться в полиэтилен (рис. I. 4). [c.25]

    Одной из наиболее значительных областей промышленного применения этилена является (производство синтетического этилового спирта. В Советском Союзе имеется ряд заводов, производящих синтетический этиловый спирт. Синтетический этиловый спирт применяется, главным образом, в качестве сырья в производстве дивинила по С. В. Лебедеву хотя в настоящее время развивается производство дивинила непосредственно дегидрированием углеводородов С4, а также растет спрос на, этилен для других важных синтезов (полиэтилен, окись этилена и др.), абсолютные количества этилена расходуемого на синтетический этиловый спирт не только не уменьшаются, а, наоборот, увеличиваются, так как потребности в этиловом спирте продолжают расти. [c.101]

    Очищать этилен от кислорода при помощи жидких абсорбентов, по-видимому, нецелесообразно. Более надежна очистка от кислорода при помощи восстановленных металлов. Сюда относятся восстановленная окись меди, марганцевая руда при температуре 300°, восстановленный железный катализатор синтеза аммиака при 250—300.  [c.103]

    Изобутилен, пропилен и этилен получаются при крекинг-процессе, но в количествах, недостаточных для удовлетворения потребностей синтеза бензина и других химических процессов. Их ресурсы увеличиваются за счет дегидрирования соответствующих алканов над катализаторами из смеси окислов металлов, содержащей окись хрома. Получаемый при этом водород можно непосредственно использовать на нефтеперерабатывающих установках. [c.611]

    Во многих странах налажено промышленное производство этилен-пропиленового каучука. В США и Канаде в промышленном масштабе получают кристаллич. блоксополимеры пропилена с этиленом. Из др. полиолефинов, не содержащих заместителей в цепи, наиболее перспективен полибутен-1. Для синтеза его используют также дешевое сырье — бутиленовые фракции продуктов нефтепереработки. Кроме того, открыт и реализован процесс каталитич. димеризации этилена в бутен-1 в мягких условиях с практически количественным выходом. Все это создало прочную сырьевую базу для организации производства этого полимера. В сравнительно небольших количествах его уже получают (данные за 1972) в США ( 10 тыс. т) и ФРГ (ок. 5 тыс. т). [c.227]


    Из известных способов получения высших алюминийалкилов промышленное применение пока что нашли способы, основанные на взаимодействии триэтилалюминия с этиленом и триизобутилалюминия с соответствующим высшим а-олефином, например ок-теном [51, с. 12 52]. Однако необходимо остановиться и на других способах, которые в будущем могут иметь промышленное применение, К таким, а первую очередь, следует отнести процессы получения индивидуальных алюминийалкилов прямым синтезом из алюминия, водорода и высшего олефина, а также одностадийный синтез высших алюминийалкилов из алюминия, водорода и этилена. [c.163]

    Коксовый газ — смесь, содержащая водород, метан, этилен, окись углерода, азот и другие вещества. При сжигании коксового газа можно получить тепло, однако вещества, содержащиеся в нем, могут служить сырьем для химических синтезов и потому использование коксового газа в качестве источника тепла нерационально. [c.170]

    Синтез метанола может протекать также в нейтральных и кислых растворах ацетатов, если в них вводятся добавки сульфатов, хлоратов или перхлоратов [6, 7]. Кроме указанных продуктов в весьма незначительных количествах могут получаться этилен, метилацетат, окись углерода и другие вещества. [c.171]

    ОКИСЬ углерода, водород и этилен. Синтез осуществляется следую-щиаг путем  [c.27]

    Отходом каталитического гидрирования и полимеризации япэля-етоя этилен, который нри желании небольшим изменением условий протекания процесса может быть сделал и главным про-,иук том. Роль этилена как важнейшего исходного сырья разнообразных и многочисленных производств промышленности органического синтеза уже весьма подробно была охарактеризована выше. Для того, чтобы подчеркнуть возможность и целесообразность пр нромышлен-,ной эксплоатации данного процесса комплексного построения производств на основе ацетилена и этилена, затрону некоторые новые дериваты этилена, начинающие играть крупную роль в современной нромышленности органического синтеза. К числу таких дериватов этилена следует отнестй 1) щ)лигликоли и их эфиры, 2) окись этилена и 3) триэтаноламин. [c.435]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    И ПОД давлением 20—50 ата к продуктам реакции добавляли затем воду, чтобы выделить кислоту в свободном виде [11]. В дальнейшем было установлено, что окись углерода может присоединяться к олефинам в присутствии воды, спиртов, аминов и других соединений, образуя соответственно кислоты, стожные эфиры и амиды. Источником окиси углерода служат карбонилы металлов, выделяющие ее в присутствии кислот мож1ю также проводить каталитическую реакцию с газообразной окисью углерода, используя соль металла, способную в условиях процесса образовывать карбонил [12]. Больше всего внимания уделялось синтезу кислот в присутствии карбонила никеля процесс проводили при 200—300° и 150 ат. Этим способом можно превратить этилен в пропионовую кислоту или ее ангидрид. [c.197]

    Как мы видели выше, синтез полиметиленов из метановых угле-ввдородов термодинамически невозможен. Кроме того, очень вероятно, что первоначально образующиеся олефины не могут превращаться в полиметиленовые углеводороды еще и по кинетическим причинам, потому что скорость циклизации олефинов в полиметилены ниже скорости гидрирования в метановые углеводороды. Принципиально возможность образования полимети-леиовых углеводородов из олефинов не исключается. Имеется много указаний на то, что такие агенты, как серная, фосфорная кислоты, окись алюминия, флоридин и активные глины ускоряют процесс полимеризации простейших олефинов с частичным образованием полиметиленовых и даже ароматических углеводородов. Чистый этилен с хлористым алюминием дает полимерные масла с формулой С Н2п-1, где х равен 8—15. Деароматизированный продукт имеет состав, явно говорящий о том, что в нем содержится много высших полиметиленовых углеводородов. [c.99]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ, произ-во крупнотоннажных орг. и неорг. продуктов на основе нефт. фракций, прир. газа и газов нефтепереработки. Важнейшие из продуктов Н. с.— этилен, аммиак, пропилеи, бензол, дихлорэтан, этилбензол, толуол, стирол, бутилены, винилхлорид, окись этилеиа, бутадиен, ксилолы, этиленгликоль, изопропиловый и этиловый спирты. Осн. процессы, к-рые использ. в Н. с.,— пиролиз, дегидрирование (в т. ч. окислительное), галогеиирование, окисление, гидратация, гидрирование, алкилирование, аммонолиз и др. [c.376]

    Ацетамидин, употребляемый в подавляющем числе синтезов пиримидинового компонента тиамина, может быть получен из ацетамида через ацето-иминоэфир. Ацетамид, с прекрасным выходом получаемый насыщением уксусного ангидрида или уксусной кислоты аммиаком или при отгонке воды из смеси уксусной кислоты и углекислого аммония 1205 ], дегидратируется при взаимодействии с хлорокисью фосфора при 100—150° С, образуя ацетонитрил. Его также получают непосредственно из уксусной кислоты и аммиака при пропускании смеси их паров над окисью алюминия или окисью тория при температуре 400—500° С [206], над селикагелем при 500° С с выходом 95% [207] или над смесью селикагеля и фосфорной кислоты при 280—300° С с выходом 87% [208]. Для получения ацетонитрила можно подвергнуть парофазной конденсации пентан и аммиак при 520° С над алю-момолибденовым катализатором (выход 43,8%) [209] или этилен и аммиак над окислами металлов, нанесенных на окись алюминия [210]. [c.399]

    Гидролиз этиленгликольдиацетата рекол1ендуется проводить ири 80—160 ""С и 0,03—0,52 МПа (0,35—5,25 кгс/см2) в присутствии катализатора серной или фосфорной кислоты (менее 0,01 моль на моль эфира) в колонне или в каскаде реакторов [53, 54]. Степень конверсии эфира и селективность процесса составляют более 99%. Таким образом, общая селективность процесса получения этиленгликоля из этилена через гликольацетаты составляет более 90% (согласно [62] 97%). Это значительно выше, чем прп синтезе этиленгликоля из этилена через окись этилена, в котором селективность, с учетом образующихся ди- и триэтиленгликолей, составляет около 70% на исходный этилен. По такому способу строится завод мощностью 363 тыс. т/г этиленгликоля [54, 55]. [c.63]

    I—котел-утилизатор 2—реактор 3—колонна отдувки СО, 4—абсорбер СОг 5—абсорбер окиси этилена б—колонна отпарки окиси этилена 7—колонна отгонки легких компонентов 8—колонна дегидратации окиси этилена 9—реактор синтеза гликолей УО—дегидратор 11—гликолевая колонна Линии /—этилен //—кислород ///—водяной пар IV—СО в атмосферу I —продувочный поток 1//—окись этилена У//—этиленгликоль VIII—оы-рые ди- и триэтиленгликоли [c.137]

    Таким образом, исходным сырьем для синтеза этиленгликоля является этилен. Промежуточный продукт — окись этилена, получаемая либо через хлоргидрин, либо прямым окислением этилена, может быть использована в многочисленных синтезах, в том числе этанолампнов, акрилонитрила, неионогенных моющих веществ и т. д. Гидратация окиси этилена в этиленгликоль осуществляется при температуре 180—195°С и давлении 17— 18 ат в присутствии небольших количеств серной кислоты. Реакция гидратации не останавливается на образовании моноэти-ленгликоля. По мере увеличения его концентрации он начинает реагировать с окисью этилена с образованием диэтиленгликоля и т. д.  [c.223]

    Этилен СН2=СН.2, пропилен СН —СН=СН,, бутилен СНз—СНз—СН=СН-2, бутадиен (дивинил) СН.,=СН—СН=СНз, будучи очень реакционноспособными соединениями, играют очень важную роль в промышленности органического синтеза. Из шoгo-численных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. В настоящее время этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пищевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. стр. 556) 1 т этилена позволяет сэкономить более [c.507]

    В зависимости от целевого продукта меняют условия проведения реакции. Для получения карбинола необходим постоянный большой избыток ацетилена, что достигается понижением температуры до (—10—0°С), использованием большого количества растворителя и медленным прибавлением карбонильного соединения. Наиболее легко в реакцию вступают ацетиленовые соединения, тройная связь которых включена в систему сопряжения (винилацетилен, фенилацетилен, ацетиленовые кетоны, ацетиленкарбоиовые кислоты и т. д.). Еще большее влияние на протекание реакции оказывает строение карбонильного соединения. Альдегиды, легко подвергающиеся уплотнению под действием щелочей, или совсем не могут быть использованы для синтеза в классических условиях, или требуют очень большого избытка растворителя. В классических условиях не удается ввести в реакцию непредельные альдегиды и кетоны (бензаль-дегид, коричный, кротоновый альдегиды, метакролеин, окись ме-зитила и т. д.), а также первые члены ряда предельных альдегидов (уксусный, пропионовый, масляный). Для получения вторичных спиртов реакцию проводят под давлением или используют апротонные растворители (ампды, ацетали, эфиры этилен-и диэтиленгликоля). [c.65]

    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]

    Тяжелый органический синтез включает ироизводство органических продуктов и полупродуктов, в число которых входят (в порядке масштабов производства) этилен, пропилен, бензол, дихлорэтан, этилбепзол, толуол, стирол, бутилены, впнилхлорид, окись этилена, бутадиен, ксилолы, этиленгликоль, изопропанол, этанол, уксусная кислота, циклогексан, циклогексанол, уксусный ангидрид, ацетон, ацетальдегид, кумол, фенол, спирты, акрилопитрил, окись пропилена, нафталин, винплацетат, фталевый ангидрид, малеиновый ангидрид и др, [1]. [c.169]


Смотреть страницы где упоминается термин Окись этилена в синтезах: [c.233]    [c.122]    [c.551]    [c.109]    [c.343]    [c.170]    [c.21]    [c.399]    [c.501]    [c.49]    [c.122]    [c.44]    [c.216]    [c.248]   
Гликоли и другие производные окисей этилена и пропилена (1976) -- [ c.134 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.14 , c.185 , c.304 , c.330 , c.331 , c.362 , c.375 , c.383 , c.396 , c.399 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.14 , c.151 , c.262 , c.288 , c.319 , c.330 , c.336 , c.348 , c.512 ]

Технология нефтехимического синтеза Часть 2 (1975) -- [ c.153 , c.201 , c.203 , c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись

Этилен синтез

окиси синтез



© 2025 chem21.info Реклама на сайте