Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебра соединения аминами

    Указанные соединения можно приготовить взаимодействием хлорной кислоты с соответствующим амином илп обменной реакцией галоидного соединения амина с перхлоратом щелочного металла или серебра. Электропроводность перхлоратов аминов была измерена в органических растворителях, в которых они обычно Б значительной степени, диссоциированы. [c.72]


    Все три металла химически малоактивны, активность уменьшается от меди к золоту. У ионов металлов заметна тенденция к сравнительно легкому восстановлению до металлического состояния. Низшие степени окисления неустойчивы у меди и обнаруживают склонность к окислению в высшие (4-1—> +2). Все три металла проявляют диамагнитные свойства. Большинство соединений их окрашено для всех металлов характерно образование комплексных соединений с анионами кислот, аммиаком, аминами и т. п. Оксиды меди, серебра и золота в воде почти нерастворимы и имеют слабоосновной характер. [c.203]

    Перспективны в зтом отношении производные низкомолекулярных аминов типа ИФХАН, летучесть которых достигает 13,3 Па [ 144). Высокая летучесть указанных соединений предъявляет высокие требования к технологическому оформлению процесса производства антикоррозионной бумаги. Первые опытно-промышленные партии антикоррозионной бумаги с использованием в качестве ингибитора ИФХАН-1 в количестве 6—8 г/м показали высокую эффективность защиты от атмосферной коррозии серебра, олова, никеля, алюминия, магния, [c.128]

    Воспроизводимость потенциалов водородного электрода достигается при соблюдении соответствующих условий электролит и, в особенности, водород для насыщения поверхности электрода должны быть высокой степени чистоты. Другими словами, водород должен быть тщательно очищен от примесей, которые отравляют платину и препятствуют установлению на электроде равновесия 2УС + 2е Иг. К таким ядам относятся цианиды, сероводород, соединения мышьяка и катионы некоторых металлов, например серебра, ртути. Мешают и другие окислители и восстановители органические амины, гидразины, нитрофенолы и т.д. Перед измерениями необходимо насытить водородом платиновую чернь, что требует много времени. Кроме того, равновесный потенциал водородного электрода устанавливается медленно, особенно в щелочных растворах. [c.115]

    Виттиг с соавторами [699] при помощи дробной кристаллизации разделил цис- и транс-формы у бромметилатов соединения (2.561) и исследовал их поведение в условиях перегруппировки Стивенса и расщепления по Гофману. Никаких различий поведения цис-и трансформ указанного бромметилата в этих реакциях не отмечено. Действием оксида серебра на соль (2.569) получен соответствующий гидроксид, который в результате термического расщепления по классической методике Гофмана с выходом 70 % превращается в амин (2.570). С другой стороны, действие 1,15 н. раствора фениллития на ту же соль в результате весьма кропотливой очистки позволило с выходом 48 % выделить продукт перегруппировки Стивенса — неустойчивый на воздухе амин (2.571) [699]  [c.181]


    Описано много комплексных соединений серебра с органическими лигандами. Известны комплексы серебра с ненасыщенными и насыщенными углеводородами, с карбоновыми кислотами, с аминокислотами, тиокислотами, комплексонами, с многочисленными аминами ароматического и жирного ряда, с лигандами, содержащими фосфор и мышьяк, с лигандами, содержащими азот и серу, азот и селен, фосфор и серу, с дикетонами и другими органическими соединениями. Не все эти соединения имеют одинаковое значение для аналитической химии. Ниже приводится краткая характеристика важнейших комплексов серебра с органическими лигандами. [c.29]

    Серебро образует комплексные соединения со многими аминами алифатического, алициклического, ароматического и гетероциклического ряда. В табл. 17 приведены данные об устойчивости комплексов серебра с алифатическими аминами. [c.38]

    Многие комплексные соединения плохо растворимы в воде, их образование и свойства зависят от структуры амина. Так, труднее всего образуются комплексы с гетероциклическими аминами, содержащими различные заместители в соседнем полО/кении с атомом азота. Кристаллические соединения с 2,4-диметилпиридином, 2,4-диметилхинолином и лигандами с ОН--группами или галогенами в а-положении не удалось получить. Другие гетероциклические амины, такие как пиридин, 2-пиколин, 2,6-диметилпиридин, изо-хинолин, 2,2-дипиридил, 2,2-дихинолин, 1,10-фенантролин, образуют при добавлении их спиртовых растворов к водным растворам нитрата серебра труднорастворимые в воде соединения. Эти комплексы хорошо растворимы в спирте и ацетонитриле, устойчивы на воздухе, негигроскопичны и, как правило, плавятся без разложения. В преобладающем большинстве случаев серебро координирует две молекулы гетероциклического амина, однако [c.40]

    Отделение и экстракция серебра в виде тройных соединений типа амин—серебро—лиганд, трибутилфосфат—серебро— лиганд и др. Растворы третичных алифатических аминов в керосине, ксилоле, дихлорэтане и других органических растворителях экстрагируют серебро из азотнокислых, хлоридных, иодидных, [c.157]

    Авторы считают, что в 2-хлориндолинах Лёйкса и Шлётцера [395] чрез-вычайно подвижный атом. хлора связан гомеополярно и что после сольволиза этих соединений водным раствором азотнокислого серебра образуется амино- кетон (V), анилиновая группа которого и восстанавливает серебряную соль. Эта точка зрения представлена формулами III—V. [c.85]

    При обработке 1-нафтиламина 1 молем серной кислоты [701] при 180—200° в условиях процесса запекания (стр. 59) единственным продуктом реакции является 4-сульфокислота. Последняя получается также с КНз(304)2 при 200° [702]. Нагревание 200 г амина с 157 г 96%-ной серной кислоты и с 600 г сульфата натрия в тщательно соблюдаемых условиях [703а] (желательно сильное перемешивание и температура, не превышающая 210°) приводит в образованию нафтионовой кислоты с выходом 80%, считая на сырой продукт. Удаление невстзгпившего в реакцию нафтиламина осуществлено при помощи диаз0тированного бензидина. В литературе имеются подробные данные о влиянии добавки сульфатов железа, меди, алюминия, никеля, серебра и ртути, а также пятиокиси ванадия [7036] на скорость реакции сульфирования 1-нафтиламина и на строение образующихся при этом соединений. Эффект, вызываемый этими добавками, невелик и, повидимому, практически бесполезен. Высший достигнутый выход 2-сульфокислоты составлял 3,3%. [c.108]

    Определите строение соединения состава СяНюО, представляющего собой жидкость с температурой кипения 101,7°С. Оно взаимодействует с гидроксил-амином, с синильной кислотой дает вещество состава СбНцОЫ, с аммиачным раствором оксида серебра зеркала не образует. При окислении исследуемого вещества получаются уксусная и проииоиовая кислоты. [c.64]

    Дегидрирование первичной аминогруппы, соединенной с первичным атомом углерода, приводит к образованию нитрилов. Реакция осуществлена под действием ряда реагентов IF5 [107], тетраацетата свинца [108], пероксида никеля [109], пиколината серебра (II) [ПО], u l—О2 — пиридина [111], N-бромосукцинимида и триэтиламина [112], а также I2—NaH Oa с последующей обработкой sF [113]. Вторичные амины иногда дегидрируются до иминов [114]. [c.274]

    Надежность полученных результатов возрастает, если имеет место образование нестойких комплексов между одной из сравниваемых неподвижных фаз и соединениями того или иного гомологического ряда. Так, непредельные углеводороды в узкой температурной области ( 20—65 °С) образуют п-комплексы с нитратом серебра, а при температурах до 100—130 °С — с нитратом таллия, растворенными в глицерине, ди-, триэтиленгликоле или поли-этиленгликоле-400. Первичные и вторичные амины в области температур 85—140 °С вступают в донорно-акцепторные взаимодействия с NaOH, а алкилпиридины способны образовывать ком- [c.182]

    Некоторые внутрикомплексные соединения — дитизонат, тиона-лидат, диэтилдитиокарбаминат таллия, тиомочевинный комплекс [Т1(С8Ы2Н4)41НОз и т. п. — находят применение в аналитической химии [151]. Комплексы таллия (I) с ЭДТА по устойчивости превосходят комплексы с другими лигандами. Для таллия (I) в отличие от меди и серебра не характерно комплексообразование с аммиаком и органическими аминами. В этом отношении таллий ближе к щелочным металлам. [c.336]


    Если аминосоединения более доступны, чем нитросоединения, то первые можно окислять до последних. Например, третичные нитроалканы нельзя получить из алкилгалогенида и нитрита серебра, а жидко- и газофазные методы нитрования едва ли можно рассматривать как методы лабораторного синтеза. Однако эти нитросоединения с превосходными выходами можно получать окислением первичных аминов, в которых аминогруппа связана с третичным атомом углерода [1]. Аналогично аминосоединения ряда пиридина и хинолина легче доступны, чем соответствующие нитросоединения, поскольку известны методы прямого аминирования. Окисление их перекисью водорода в серной кислоте дает удовлетворительные выходы нитросоединений [2]. К тому же этот метод синтеза иногда имеет ценность, если хотят получить соединение с определенным положением заместителей в ароматическом кольце. Например, окисление легко доступного 2,4,6-триброманилина перекисью водорода и малеиновым ангидридом [3] представляет интерес как метод получения 2,4,6-три-бромнитробеизола (90%). Образующаяся в этом случае надмалеиновая кислота несомненно является очень сильным окислителем для аминов, уступающим только надтрифторуксусной кислоте (пример а). При окислении ароматических аминов используют лить надкислоты. [c.503]

    Лигандообменную хроматографию применяют для разделения в водной среде соединений, представляющих большой интерес для органической химии и биохимии аминов, аминокислот, белков, нуклеотидов, пептидов, углеводов. При этом в вчестве комплексообразующих используют ионы меди, цинка, кадмия, никеля, серебра и железа. Ионы ртути и серебра в неполярной среде алифатических углеводородов образуют лабильные комплексы с ненасыщенными и ароматическими углеводородами. Большими достоинствами лигандообменной хроматографии является ее селективность и отсутствие жестких требований к сорбенту, который может быть прочно связан ионами металла или только пропитан солями металла. [c.82]

    С. в виде сплавов применяется для чеканки монет, для изготовления ювелирных изделий, столовых приборов, лабораторной посуды, как катализатор, для аккумуляторов. Из солей С. практическое значение имеют галогениды в производстве фотоматериалов нитрат серебра AgNOздля получения других соединений С., в аналитической химии для определения галоид-ионов, в медицине ( ляпис ), в производстве зеркал. Ионы серебра обладают хорошими антисептическими свойствами. Серии СНг(ОН)—СН(ЫНг)—СООН—а-амино-Р-оксипропиоиовая кислота, входит в состав белков растительного и животного происхождения, содержится в казеине (белковое вещество молока). В печени из С. образуется цистин. [c.118]

    Образование солей четвертичного аммония с последующим элиминированием по описанной схеме — оченьполезная реакция при определении структур некоторых сложных азотсодержащих соединений. Соединение, которое может быть первичным, вторичным или третичным амином, превращается в гидроокись четвертичного аммония при обработке избытком иодистого метила и окиси серебра. Число метильных групп, связывающихся с атомом азота, зависит от класса амина первичный амин связывает три метильные группы, вторичный — две, а третичный — лишь одну. Этот процесс известен под названием исчерпывающего метилирования аминов. [c.714]

    В разд. 14.22 было показано, что алкилгалогениды удобно определять по осаждению нерастворимых галогенидов серебра, получаемых при нагревании их со спиртовым раствором нитрата серебра. Реакция происходит почти мгновенно с третичными бромидами, а также с аллил- и бензилбромидами и требует некоторого времени (порядка 5 мин) в случае первичных и вторичных бромидов. В противоположность этому соединения, содержащие галоген, связанный непосредственно с ароматическим ядром или с атомом углерода при двойной связи, не образуют галогенидов серебра в этих условиях. Бромбензол или бромистый винил можно нагревать со спиртовым раствором AgNOз в течение нескольких дней, но при этом не удается обнаружить даже малейших следов АбВг. Аналогично не удаются попытки превратить арил- или винилгалогениды в фенолы (или спирты), простые эфиры, амины или нитрилы действием обычных нуклеофильных реагентов арил- и винил- [c.786]

    В последние годы в качестве ингибиторов коррозии серебра и меди предложены кремнийорганические амины, образующие на поверхности серебряных изделий прочную прозрачную пленку. К таким соединениям относятся аминоалкилсиликоны, например триметилсилилметилдиэтил-аммоний. Раствор этого вещества либо наносят на поверхность серебряного или медного изделия, либо погружают изделия в 0,05-0,1 %-й спиртовый раствор, либо распыляют этот раствор на поверхности изделия. После нанесения раствора изделия сушат на открытом воздухе или в сушильном шкафу. Защитная пленка эффективна уже при толщине 0,1 мкм. Она надежно защищает серебряные и медные изделия от потускнения как в воздушной среде, так и в слабокислых или слабощелочных растворах, Благодаря высокой защитной способности и механической прочности кремнийорганических лаковых пленок подобные кремнийорганические ингибиторы весьма перспективны. [c.186]

    В работе [132, 133] на примере анализа щавелевой кислоты, оксалата аммония, лимонной кислоты, цитрата натрия и п-амино-салицилата натрия была показана возможность радиометрического титрования органических кислот и их растворимых солей соединением AgNOa. Анализ этим методом включает в себя количественное осаждение солей серебра и последующее обнаружение избытка иона серебра в жидкой фазе после образования и осаждения твердой фазы. Недавним усовершенствованием радиометрического метода определения щавелевой кислоты явилось титрование 0,1 н. или [c.166]

    Выл предложен также и метод определения других первичных алифатических аминов, основанный на приведенной выше последовательности реакций. Указывалось на применимость этого метода и к анализу вторичных алифатических аминов [114]. Однако в присутствии 130сстаповителей, когда образуется металлическое серебро, или в случае, когда ион серебра сильно абсорбируется субстратом, может быть трудно добиться высокой чувствительности анализа этим методом. Но хорошей чувствительности от этого метода ожидать можно, поскольку на каждый эквивалент амина образуется до двух эквивалентов серебра в форме нерастворимого соединения. [c.318]

    Петерс и его сотрудники [1459] описали процесс, используемый для производства нитрила метакриловой кислоты. Он состоит в пропускании металлиламина, воздуха и водного пара над катализатором (окисью серебра) при 450 — 600°. Продукт реакции слабо подкисляют и собирают нитрил и другие летучие соединения. Отогнанный таким образом нитрил метакриловой кислоты достаточно чист (приблизительно 96%-ной чистоты) он содержит около 2% других нитрилов. Дальнейшая очистка может быть осуществлена фракционированной перегонкой. Подкисление продукта реакции имеет важное значение, поскольку в отсутствие кислоты, образующийся в качестве побочного продукта аммиак и не ВСТУПИВШИЙ в реакцию амин довольно быстро взаимодействуют с ненасыщенными нитрилами с образованием высококипя-щих азотистых оснований. [c.424]

    Реакцию проводят следующим образом к водному раствору солянокислого амина прибавляют взмученное в воде азотистокислое серебро, хлористое серебро отфильтровывают, фильтрат нагревают или, если соединение непрочно, оставляют его разложиться самопроизвольно, и образовавшийся спирт перегоняют с водяным паром. Реакцию замещения иногда М0Ж1Ю вести и иным образом, а именно, действуя на алшн азотистым ангидридом в присутствии воды. [c.81]

    Двуатомные спирты (гликоли) также образуются при действии азотистой кислоты иа д и а м и н ы, при растирании водного раствора солянокислого диамина с азотистокислым серебром. П е н т а м с т и л е н г л и к о л ь СНа(ОН) Hj Hj Hj Hj(OH) получается таким же путем из пеитаметилемдиамииа Однако и здесь реакция протекает ие совсем гладко в качестве побочных продуктов образуются непредельные соединения. Кроме того при. этом можно ировести только частичное замещение амина на гидроксил. [c.82]

    Разделение триэтаноламином N (СН2СН20Н)з. Триэтанол-амин образует с кобальтом растворимое комплексное соединение карминово-фиолетового цвета, соли никеля и меди дают растворы, окрашенные в синий цвет. Катионы ртути (1), свинца, серебра, кадмия, ртути (II), висмута, олова, железа, алю.миния, хро.ма и цинка образуют осадки различного цвета. Триэтанол-амин применяется для качественного обнаружения кобальта [747, 868], для разделения кобальта и никеля [1224], отделения железа от кобальта и никеля [954] и как групповой реагент в качественно.м анализе [276]. В последне.м случае при прибавлении 20%-ного раствора триэтаноламина к растворам, содержащим катионы алюминия, марганца, цинка, висмута, олова (II), сурьмы и железа(II), образуются осадки, нерастворимые в избытке триэтаноламина, а катионы трехвалентного хро.ма,. меди, кобальта и никеля образуют окрашенные растворимые соединения катионы ртути, свинца и четырехвалентного олова в этих условиях дают бесцветные растворимые комплексы. [c.71]

    Аналогичные комплексы образует серебро с сульфопроизводными соединений, содержащих вместо азота фосфор или мышьяк с Л1-(СбН5)2РСвН430з и л -АйСвН ЗОд. Эти комплексы характеризуются ступенчатыми константами устойчивости, равными соот ветственно 1,4-10 0,9-10 и 2,5-10 2,3-10 . Сродство ионов серебра к фосфину значительно больше, чем к аминам [517]. [c.45]

    Можно фотометрировать окрашенный в интенсивно-фиолетовый цвет пиридиновый раствор соединения серебра с солью Рейнеке [1628], соединение с о-толлидином [198, 200] и другие соединения [71, 818], что имеет второстеиенное значение в фотометрических методах. Мало избирательными являются реакции образования окрашенных соединений серебра с 2-амино-6-метилтио-4-пири-мидинкарбоновой [733] и рубеановодородной кислотами [1646, 1647]. [c.106]

    Комплексы серебра с салициловой и стеариновой кислотами [591] экстрагируются из азотнокислых растворов растворами ди-к-бутиламина в метилизобутилкетоне в виде соединений с молярным отношением компонентов серебро—амин—лиганд, равным 1 2 1 и 1 1 1 соответственно. Введение в систему маскирующих веществ — о-аминобензойной или N,N-диyк y нoй кислоты предотвращает экстракцию почти всех мешающих катионов, кроме ртути. — [c.160]


Смотреть страницы где упоминается термин Серебра соединения аминами: [c.41]    [c.104]    [c.334]    [c.192]    [c.409]    [c.497]    [c.347]    [c.53]    [c.181]    [c.179]    [c.686]    [c.341]    [c.136]    [c.41]    [c.42]    [c.44]    [c.44]    [c.76]    [c.118]   
Аналитическая химия серебра (1975) -- [ c.38 ]




ПОИСК







© 2025 chem21.info Реклама на сайте