Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение фосфора никеле

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Золото определяли [283] с чувствительностью 0,1 мкг мл в. фосфоре, никеле, меди и висмуте особой чистоты, применяя в качестве экстрагента диизопропиловый эфир. Реагент применен [251] для определения (0,1—50) 10" % Au в чистом железе. Не мешают [c.151]

    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Фотометрический метод определения фосфора в никеле и его сплавах [402] основан на образовании восстановленного комплексного соединения фосфорномолибденовой гетерополикислоты с бриллиантовым зеленым, экстрагируемого смесью хлороформа и бутанола (2 1). Экстракцию проводят в присутствии комплексона III, в качестве восстановителя применяют мочевину. [c.93]

    Описан амперометрический метод определения фосфора в ста- лях и металлическом никеле, основанный на применении в качестве титранта диантипирилметана [217], который образует с фосфорномолибденовой кислотой осадок, представляющий собой ее трехзамещенную соль, и окисляется на индикаторном Pt-злект-роде. [c.130]

    При определении фосфора в металлических никеле и кобальте фосфор выделяют с коллекторами соответственно состава [c.141]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Никель. Метод определения фосфора [c.578]

    С, С. Ш а н о в с к а я. Зав. лаб., 18, № 12, 1417 (1952). Фотоколориметрическое определение фосфора в жароупорны. с сталях, Е. А. Нечаева, Э. С. Лапидус, Зав. лаб., 22, № 4, 418 (1956). Колориметрическое определение малых количеств фосфора, мышьяка и кремния в никеле и меди, И. А. Филиппова, Л. И. Кузнецова, Зав. лаб., 16, № 5, 536 (1950). [c.430]


    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Для определения фосфора в никеле и его сплавах [41] применен метод. Описанный в разделе III. 8.3. Установлено, что вольфрам и рений при их содержании 10% не мешают определению фосфора. [c.102]

    Во многих случаях применяют восстановление с помощью хлорида олова(И). Так, рекомендован метод определения фосфора в сталях, высоколегированных хромом и никелем [70], в золе твердого топлива [71] и в почве [72]. Однако применение в качестве восстановителя хлорида олова(II) без предварительной экстракции желтого комплекса или без экстракции восстановленного комплекса приводит к большим ошибкам определения фосфора. [c.107]

    Определение хрома, никеля, кобальта, циркония, фосфора и ниобия (тантала) производится из отдельных навесок. [c.245]

    Образование устойчивых диффузионных слоев без нарушения сплошности твердого тела возможно лишь при условии, когда решетка металла, в которую проникает диффундирующий элемент, не претерпевает сильного искажения. Из литературы известно, что атомный диаметр никеля равен 2,48 А, железа 2,54 А, а фосфора 2,20 А [33 ]. При таком соотношении атомных диаметров, а также наличии определенной растворимости никеля и фосфора в железе и тесном контакте, дис узия никеля и фосфора вполне возможна. Это подтверждается исследованиями, которые показывают, что никель проникает внутрь железа сначала по грани- [c.31]

    Изучая условия применения ионитов в аналитической химии, Ю. Ю. Лурье и Н. А. Филиппова показали возможность определения фосфора в металлическом никеле. и меди. При анализе этих материалов, содержащих менее 0,005% Р, авторы рекомен дуют брать навеску не менее 2 г. [c.210]

    Определение фосфора в покрытии (см. в разделе Аналитические методики по определению никеля, гипофосфит-иона и фосфора). Знание содержания фосфора очень важно, так как от его количества зависит значение многих характеристик (например, температура плавления химически восстановленного фосфора колеблется в пределах до 1200°С [13]). [c.155]

    Весовой метод дает вполне удовлетворительные результаты, учитывая равномерность покрытия. Весовая методика применяется для определения толщины и других видов покрытий. Струйный и капельный методы не Могут быть применены для определения толщины никель-фосфорного покрытия, ввиду получения непостоянных данных (влияние содержания фосфора). [c.156]

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    В нефти В очень малых количествах присутствуют и другие элементы, главным образом металлы ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, германий, а также фосфор и кремний. При определении элементарного состава нефти эти элементы концентрируются в остатке, называемом золой. [c.18]

    Никель. Пробу разлагают и серу восстанавливают до сероводорода смесью HJ и красным фосфором. Определение серы заканчивают фотометрически по окраске метиленового голубого [911]. [c.199]


    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Этот метод применен также для определения ультрамалых количеств мышьяка в фосфоре, никеле и висмуте высокой чистоты [192]. Чувствительность метода 0,1 мкг Аз. В этой же работе описан еще один вариант косвенного определения мышьяка, включающий реэкстракцию молибдоарсената, окисление им иодида до иода и спектрофотометрическое определение выделившегося иода в виде иодокрахмального комплекса. [c.66]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Присутствие в растворе окрашенных катионов меди, никеля, хрома и других элементов мешает колориметрическому определению фосфора и поэтому его предварительно отделяют. Для отделения фосфора от мешаюших компонентов нами был применен метод, основанный на ионном обмене [3, 4]. [c.233]

    Мешающие вещества. Определению фосфора не мешают ионы аммония, натрия, калия, лития, магния, стронция, бария, бериллия, кадмия, кальция, хрома(III), кобальтл, меди(II), марганца (II), никеля, ртути (П), а также анноны — ацетат, борат, бромид, хлорид, иодат, иодид, нитрат и селенит. Ионы золота(III), висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и циркоиила должны отсутствовать. Могут присутствовать в количестве до 1 мг ионы фторида, перйодата, перманганата, ванадата и цинка. Наличие алюминия, железа(III) и вольфрамата не должно превышать 10 мг в пробе. [c.104]

    Ю. И. Усатенко и О. В. Дaцeнкo Ю. Ю. Лурье и Н. А. Филиппова применили ионообменные процессы в анализе сплавов. Усатенко и Даценко пользовалась вофатитом Р при определении фосфора в фосфористой меди и в феррофосфоре. Выделенную фосфорную кислоту оттитровывали в первом случае через 30 мин. и во втором случае через 1 час. Лурье и Филиппова путем ионного обмена выделили фосфор, серу и мышьяк из металлических никеля и меди. Из раствора, полученного после растворения никеля или меди, катионит задерживает катионы никеля или меди, а сера, фосфор и мышьяк в виде анионов проходят в фильтрат, где могут быть определены с большой точностью. Емкость катионита в аммиачной среде оказалась значительно больше, чем в кислой среде. Эти исследования показали, что для успешного разделения смесей ионов, получаемых при растворении различных сплавов, необходим подбор условий, зависящий от качественного и количественного состава разделяемой смеси. [c.123]

    Рекомендованные В. Г. Горюшиной и другими (в Гиредмете) фотометрические методики определения микропримесей основаны главным образом на использовании известных ранее высокочувствительных и избирательных цветных реакций, образуемых примесными элементами с различными органическими и — реже — неорганическими реагентами. В качестве примера можно назвать дитизон, использованный для определения серебра, золота, ртути и других элементов, диэтилдитиокарбами-нат свинца — для меди, а-фурилдиоксим — для никеля, батофенантро-лин — для железа. Большое значение имели реакции образования восстановленных гетерополикислот, используемые при определении фосфора, мышьяка и кремния, или реакция образования роданида железа, удобная для определения данной примеси в некоторых материалах высокой чистоты (галлий, индий, их соединения и др.). Чувствительность всех этих методов в фотометрическом или спектрофотометрическом вариантах лежит, как правило, на уровне 10 %. [c.12]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Из навески 1,2000 г специальной стали выделили фосфор в виде (ЫН4)зР(МозОю)4 и после соответствующей обработки получили 0,4450 г весовой формы РЬМо04. Для определения никеля из этой же навески стали осадили диметилглиоксимат М1С8Н14М404 массой 0,1812 г. Вычислить процентное содержание Р и N1 в стали. [c.76]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]

    На алюминиевые детали методом химического никелирования нанесено покрытие с содержанием 90 % (мае.) никеля и 10 % (мае.) фосфора. Средняя плотность покрытия 7,9 г/см . Анодное растворение такого покрытия в растворе H2SO4 при плотности тока 20 А/дм проводившееся для определения его толщины, продолжалось 3 мин 10 с. При растворении 15 % фосфора нз покрытия окислялось до фосфита, остальная часть—до фосфата. Коэ( зфициент использования анодного тока при растворении 95 %. [c.225]

    Природа материвла основы оказывает определенное влияние иа прочность сцепления его с покрытием При одинаковых уело ВИЯХ термообработки адгезия на образцах нз легированных сталей несколько ниже чем ка образцах нз углеродистой стали Удовлет верительная прочность никель-фосфориого покрытия с алюмини- [c.10]

    В процессе химического никелирования состав раствооа все время меняется уменьшается количество гипофосфита и увеличивает ся содержание фосфитов, что оказывает отрицательное действие на работоспособность и стабильность раствора а также влияет на содержание фосфора в покрытии При достижении определенной концентрации фосфитов (для кислых растворов 40—50 г/л для щелочных 350—400 г/л) происходит выпадение фосфитов никеля что делает раствор непригодным к дальнейшему использованию [c.44]

    Разработаны методы определения сульфидной серы в солях никеля [80], в четыреххлористом титане [41] сероводорода — в атмосферном воздухе [1445], 10 % S — в треххлорсилапе, 10 % S — в воде [501], 8-10 % S — в фосфоре [523]. [c.121]

    При определении серы в фосфоре чувствительность при потоке 0,87-10 нейтр1см -сек и времени облучения 20 час. для навески фосфора в 1 0 составляет для серы 2-10" %, относительная ошибка 10—20% [518]. Метод нейтронной активации применен для определения серы на бумажных хроматограммах [1224], 10" % S в мьш1ьяке [1149], в молибдене [762] и в чистой меди [106]. В последнем случае используют реакцию (и, /)) Р. Пробу и эталоны (содержащие элементную серу) облучают 5 час. в нейтронном генераторе с выходом нейтронов 8-10 нейтрЫм -сек. После разложения пробы концентрированной азотной кислотой в присутствии фосфата как носителя осаждают фосфоромолибдат аммония и измеряют Р-активность Р на сцинтилляционном счетчике. Ошибка определения (1,5—2) 10" % S составляет 15—20% [106]. Методика может быть также применена для определения серы в цинке, никеле, магнии, кобальте, щелочных и щелочноземельных металлах и РЗЭ. [c.156]


Смотреть страницы где упоминается термин Определение фосфора никеле: [c.149]    [c.251]    [c.109]    [c.64]    [c.84]    [c.53]    [c.169]    [c.167]    [c.157]   
Аналитическая химия фосфора (1974) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Никель определение

Определение в фосфорите



© 2025 chem21.info Реклама на сайте