Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эквивалентная электропроводность определение

    Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (например, поверхностного натяжения а, мутности т, эквивалентной электропроводности У., осмотического давления л, показателя преломления п). На кривой зависимости свойство — состав в области ККМ обычно появляется излом (рис. VI. 6). Одна из ветвей кривых (при более низких концентрациях) на рис. VI. 6 описывает свойства системы в молекулярном состоянии, а другая — в коллоидном. Абсциссу точки излома условно считают соответствующей переходу молекул в мицеллы, т. е. критической концентрацией мицеллообразования. Очевидно, что при ККМ существует весьма незначительное число мицелл. Ниже приводится краткое описание некоторых методов определения ККМ. [c.302]


    С ростом напряженности электрического поля Р подвижность ионов возрастает и при определенном значении может достичь такой величины, когда за удвоенное вре-мп релаксации ион будет успевать выходить за пределы ионной атмосферы. При таких условиях ионные атмосферы не образовываются, поэтому вызываемые ими тормозящие эффекты не возникают, т. е. Я] = О и Яц = 0. Измеренная величина эквивалентной электропроводности электролита в этом случае составляет (эффект Вина). [c.41]

    Для определения константы диссоциации измеряют электрические проводимости растворов слабого электролита при убывающих концентрациях от 0,5 до 0,001 г-экв/л. Вычисляют по уравнениям (XIV. 19) и (XIV. 10) удельную и эквивалентную электропроводности, по уравнению (XIV. 17) степень диссоциации и по уравнению (XIV. 20) константу диссоциации. Предельную электропроводность [c.193]

    Подвижность можно определить из вполне доступных измерений электропроводности х, а также чисел переноса. Если к задана в обычных единицах, в каких единицах получатся значения а) ионной электропроводности, б) ионной подвижности, в) эквивалентной электропроводности Проверьте, в каких единицах (по определению) задается подвижность. В таблицах обычно приводятся значения ионной электропроводности. [c.329]

    Определение растворимости труднорастворимых солей. Определение основано на использовании уравнения (5.5), связывающего удельную и эквивалентную электропроводности  [c.199]

    Б. Особенности электропроводности неводных растворов. В водных растворах, а также в неводных растворителях с высокой диэлектрической постоянной эквивалентная электропроводность обычно возрастает с ростом разведения (см. рис. 16) в результате увеличения подвижности ионов, а для слабых электролитов также и степени диссоциации. Эта закономерность нарушается в неводных растворителях с низкой диэлектрической проницаемостью, что было впервые обнаружено в 1890 г. И. А. Каблуковым при исследовании растворов хлористого водорода в амиловом спирте. Электропроводность этих растворов возрастала с ростом концентрации (т. е. с уменьшением разведения) в определенном интервале. Такое явление называется аномальной электропроводностью. В растворителях с диэлектрической проницаемостью е<с35 на кривых зависимости эквивалентной электропроводности от разведения можно наблюдать максимум и минимум (рис. 23). П. Вальден установил, что разведение, отвечающее минимуму электропроводности, и диэлектрическая проницаемость растворителя связаны соотношением e /v и 30. [c.77]

    Рассчитать эквивалентную электропроводность изучаемых растворов по уравнению (2.32). Результаты определения удельной электропроводности и рассчитанные значения эквивалентной электропроводности представить графически в координатах и — си Л — ]/"с. Экстраполяцией прямой в координатах А — У с к с = О определить предельную электропроводность хлорида калия Л (см. уравнение (2.40)]. [c.98]


    Для определения предельной эквивалентной электропроводности слабого электролита используют закон Кольрауша (закон независимого движения ионов), который для растворов уксусной кислоты, например, можно записать в виде [c.98]

    В дальнейшем явление аномальной электропроводности и наличие минимума на кривой зависимости эквивалентной электропроводности от разбавления были установлены во многих растворителях с диэлектрической проницаемостью ниже 35. П. И. Вальден на основании экспериментальных данных нашел, что минимум лежит при определенном значении разбавления и связан с диэлектрической проницаемостью растворителя соотношением  [c.104]

    Эквивалентной электропроводностью X называется электропроводность такого объема раствора V = 1/С, в котором содержится 1 г-экв вещества, причем электроды расположены на расстоянии 1 см друг от друга. Согласно определению эквивалентная и удельная электропроводности связаны соотношением  [c.223]

    Определение степени и константы диссоциации слабого электролита. В теории электролитической диссоциации принято, что эквивалентная электропроводность при данном разбавлении % пропорциональна степени диссоциации электролита в этом растворе к = ка, где к — коэффициент пропорциональности, зависящий от природы электролита. При бесконечном разбавлении раствора электролит полностью распадается на ионы (а = 1). Поэтому Я-оо = /са = к. Следовательно, коэффициент пропорциональности к представляет собой эквивалентную электропроводность данного электролита при бесконечном разведении, откуда [c.227]

    Очень слабые кислоты практически не взаимодействуют со слабыми основаниями, что может быть использовано при определении некоторых многоосновных кислот. Например, если титровать фосфорную кислоту раствором аммиака, то кондуктометрическая кривая имеет изломы, соответствующие первой и второй точкам эквивалентности. При титровании до первой точки электропроводность понижается, а до второй — повышается. После второй точки эквивалентности электропроводность остается постоянной, так как аммиак не взаимодействует с НРО -ионами, кислотные свойства которых выражены очень слабо. [c.81]

    При определении ККМ по измепепию электропроводности пе обязательно находить удельную или эквивалентную электропроводность, а достаточно установить характер изменения электропроводности системы при изменении концентрации растворенного мыла. [c.120]

    Помимо содержания основных компонентов электролита — сульфата меди и серной кислоты, — на удельное сопротивление раствора оказывают заметное влияние также содержащиеся в нем примеси, особенно те, которые накапливаются в электролите до значительных концентраций (электроотрицательные металлы). Эквивалентная электропроводность растворов сульфатов таких наиболее быстро накапливающихся в электролите металлов-примесей, как никель и железо, примерно равна эквивалентной электропроводности раствора сульфата меди той же концентрации. Поэтому для определения удельного сопротивления электролита, содержащего указанные примеси, к действительному содержанию меди в растворе прибавляют такие количества ее, которые эквивалентны содержанию никеля и железа, и по этому общему условному содержанию меди (так называемому медному эквиваленту) по таблицам определяют удельное сопротивление электролита. [c.16]

    Работа 2. Определение предельной эквивалентной электропроводности электролитов [c.16]

    Целью работы является определение этим методом предельных эквивалентных электропроводностей сильных электролитов (электролиты указываются преподавателем) и расчет коэффициентов /я,. Для слабых электролитов этот метод непригоден, так как для них зависимость от ][С не является линей юй (см. рис. 7). [c.17]

    Экспериментальная часть. Для определения предельной эквивалентной электропроводности сильных электролитов последовательным разбавлением готовят 4—5 растворов различной концентрации от 0,1 до [c.17]

    Наиболее распространенным методом определения критической концентрации мицеллообразования для ионогенных полуколлоидов является кондуктометрический метод. Известно, что при бесконечном разбавлении эквивалентная электропроводность раствора электролита зависит от подвижности его анионов и катионов. При этом кривая в координатах X = f( ) мало отличается от прямой, идущей почти параллельно оси концентраций. [c.82]

    У слабых электролитов (например, СНзСООН) величина электропроводности непрерывно возрастает при всех значениях концентраций, при которых еще возможно опытное определение. Предельные, максимально возможные и постоянные значения эквивалентной электропроводности у таких электролитов вычисляются теоретически. [c.264]

    Ранее уже описывалась сущность определений степени диссоциации а и константы диссоциации К слабых электролитов иутем измерения удельной электропроводности растворов и вычисления эквивалентной электропроводности их ио заданной концентрации. [c.275]

    По мере разбавления удельная электропроводность раствора электролита х сначала возрастает вследствие увеличения а, а затем, после достижения максимального значения, убывает из-за уменьшения числа ионов в единице объема. Эквивалентная электропроводность с увеличением разбавления возрастает ввиду появления новых ионов и достигает предельного постоянного значения при а . Таким образом, определения сводятся к измерениям а в зависимости от концентрации электролита и экстраполяции вычисленных величин к на нулевую концентрацию. [c.195]


    Эквивалентная электропроводность при разбавлении раствора (уменьшении концентрации) увеличи- вается, достигая при бесконечно большом разбавлении максимального и постоянного значения (рис. 41). Это значение является определенным для каждого электролита и называется эквивалентной электропроводностью при бесконечном разбавлении, обозначается А,о (или Яоо). [c.123]

    Для определения молекулярной, или эквивалентной, электропроводности не нужно создавать громоздких электродов, требующих большой массы платины, так как только один этот металл не изменяется при прохождении электрического тока через электролит. Эту вели- [c.206]

    Титрование слабой кислоты слабым основанием. В этом случае изменение электропроводности раствора до точки эквивалентности связано только с повышением концентрации анионов кислоты и катионов основания. Если реакция протекает количественно, то концентрации этих ионов равны между собой и линейно возрастают. После точки эквивалентности электропроводность раствора остается практически постоянной. Ограничения связаны с гидролизом образующихся солей. В результате гидролиза в растворе снижаются равновесные концентрации анионов кислоты и катионов основания. При этом кривые титрования закругляются вблизи точки эквивалентности. Кондуктометрическое определение [c.161]

    Диаграммы молекулярная (эквивалентная) электропроводность — состав практически не применяются для анализа концентрационного изменения электропроводности в двойных жидких системах. М. И. Усанович [509, с. 173] объяснил это тем, что истинная концентрация электролитного компонента практически не совпадает с аналитической концентрацией. Этим же объясняется появление так называемых аномальных изотерм молекулярной электропроводности. Действительно, в том случае, когда независимым путем можно определить истинную концентрацию электролитного продукта, возникающего при взаимодействии компонентов системы, аномальные кривые A превращаются в нормальные. На рис. 12 сопоставляются изотермы состав для системы диэтиловый эфир — серная кислота, рассчитанные на определенную [c.25]

    Точные измерения электропроводности ионогенных ПАВ не представляют особых трудностей. При увеличении концентрации добавляемой соли точность измерений уменьшается. Так как подвижность отдельных ионов будет заметно отличаться от подвижности агрегированных ионов, то при ККМ происходит резкое изменение эквивалентной электропроводности. По точности и широте применения метод электропроводности, широко используемый для растворов ионогенных ПАВ [И, 26—32], отличается от других методов определения ККМ по измерению других физико-химических свойств этих ПАВ. [c.18]

    Ионная и электронная электропроводность. Проводники первого и второго рода. Прохождение тока сквозь раствор электролита механизм прохождения тока. Сопротивление проводника. Закон Ома. Единицы измерения (электрические). Основные приборы вольтметр, амперметр, гальванометр, кулонометр и т. д. Удельное сопротивление, удельная электропроводность. Мостик Уитстона. Принцип измерения сопротивления. Особенности измерения сопротивления раствора электролита (телефон, катушка Румкорфа). Влияние температуры и разведения нз удельную электропроводность. Молекулярная и эквивалентная электропроводность. Зависимость от температуры и разведения. Электропроводность при бесконечном разведении. Закон независимого перемещения ионов. Вычисление Хоо из подвижностей ионов. Вычисление степени и константы диссоциации для слабых электролитов. Сильные электролиты. Коэфициент электропроводности. Причины изменения с концентрацией в случае сильных электролитов. Скорости и подвижности ионов. Роль среды и природы иона. Электропроводность чистой воды. Введение поправки на эту величину. Определение константы прибора. Калибровка линейки. Переход от электропроводности, измеренной в данном сосуде, к удельной электропроводности. Кондуктометрическое титрование. [c.93]

    Из определения следует, что эквивалентная электропроводность равна удельной электропроводности, умноженной на число миллилитров раствора, содержащего при данном разведении 1 грамм-эквивалент вещества. [c.94]

    Ход определений тот же, что и для сильного электролита. Рассчитывают удельную и эквивалентную электропроводности, степень диссоциации и константу диссоциации по уравнению [c.107]

    Цель работы. Установление зависимости удельной и эквивалентной электропроводности от концентрации раствора, а также определение степени и константы диссоциации для слабых электролитов и коэффициента электропроводности для сильных. [c.258]

    Показано существование единой для комплексов всех оксониевых оснований с гидратированным протоном и самого гидратированного протона зависимости эквивалентных электропроводностей, определенных методом дифференциальной кондуктометрии,от обратной величины аффективного радиуса г этих комплексов, оцененной из соот-ветствущей аддитивной рефракции. [c.163]

    Кондуктометрическос определение ККМ основано на измерении концентрационной завис имости электропроводности растворов ионогенных ПАВ. В области концентраций до ККМ зависимости удельной и эквивалентной электропроводности от концентрации ПАВ соответствуют аналогичным зависимостям для растворов средних по силе электролитов. При концентрации, соответствующей ККМ, на графиках зависимостей наблюдается излом, обусловленный образованием сферических ионных мицелл. Подв жность ионных мицелл меньше подвижности ионов и, кроме того, значительная часть противоионов находится в плотном слое Гельмгольца, что существенно уменьшает электропроводность раствора ПАВ. Поэтому при увеличении концентрации ПАВ больше ККМ эквивалентная электропроводность более резко уменьшается, а возрастание удельной электропроводности значительно ослабляется. По изменению удельной электроп[)Оводности х можио также определить ККМй (рис. 38). [c.133]

    Для нескольких водных растворов 1—1. электролитов, имеющих общий катион, известны значения эквивалентной электропроводности к при различных напряженностях электрического поля Р и определенной концентрации с. Температура растворов 25° С. Рассчитать число переноса к,1тиона /+ и величину эквивалентной электропроводности а 1иона при бесконечном разбавлении в каждом электролите. Установить характер влияния природы аниона на величину 4-. [c.51]

    Для определения константы диссоциации слабой кислоты (уксусной, бензойной, щавелевой и т. ц.) измерить электропроводность 4—5 растворов разной концентрации при заданной температуре. Рассчитать эквивалентные электропроводности и в тичины Лс из полученных удельных электропроводностей с учетом удельной электропроводности воды. Построить график Лс — (1/Л) и вычислить константу диссоциации слабой кислоты. [c.99]

    Определение /г-фенилендиамина (ПФДА) основано на реакции нейтрализации его п-толуолсульфокислотой (ПТСК) в среде ацетона. В этих условиях происходит дифференцированное титрование п-фенилендиамина по ступеням нейтрализации. При титровании до первой точки эквивалентности электропроводность повышается, а до второй — понижается, это объясняется тем, что образующаяся средняя соль выпадает в осадок. При избытке титранта электропроводность снова повышается. [c.457]

    Найти удельную н эквивалентную электропроводность, если площадь электродов 5,25 0,05 см , а расстояние между ними 0,65 0,02 см. Плотность раствора 1,07 0,02 г1см Какое из измерений дает наибольшую ошибку Рассчитать точность определения электропроводности. [c.152]

    Определяя эквивалентную электропроБодность для разбавленных растворов электролитов, можно заметить интересные закономерности. Например, разность между предельными электропроводностями растворов сульфата калия и натрия (Хм, = 153,4 и кх. ма,5о. == 129,9) равна 23,5. Такая же разность получается между величинами к,сг,о, и ыа сг о, и т. д. Это можно объяснить лишь предположением, что в разбавленных растворах каждый из ионов обусловливает свою определенную долю эквивалентной электропроводности. Следовательно, [c.12]

    Для определения предельной эквивалентной электропроводности слабоассоциированных электролитов пользуются уравнением (16). Для этого определяют значения электропроводности при убывающих весьма малых концентрациях электролита. Полученные данные наносят на график зависимости Хс от У С и производят линейную экстраполяцию до нулевой концентрации. Таким образом, получается прямая, отсекающая на оси ординат отрезок, который и отвечает значениям Кос. Этот метод пригоден для концентраций не выше 0,003 г-экв/л. Для более концентрированных растворов (0,5 г-экв/л) нужно пользоваться уравнением (17). Для слабых электролитов величина определяется также из закона независимого движения ионов Кольрауша (13). Электропроводности ионов берут из табличных данных (см. табл. 7). Прежде чем ими пользоваться, необходимо произвести пересчет с поправкой на температуру опыта по формуле [c.118]

    Для определения предельной эквивалентной электропроводности сильных электролитов пользуются уравнением (IV. 15). Для этого замеряют значения электропроводности при убывающих весьма малых концентрациях электролита. Полученные данные можно нанести на график зависимости Хс от /Си произвести линейную экстраполяцию до нулевой концентрации. Таким образом, получается прямая, отсекающая на оси ординат отрезок, который и отвечает значениям Хс . Этот метод пригоден для концентраций не выше 0,003 г-экв1л. Для более концентрированных растворов (0,5 г-экв1л) нужно пользоваться уравнением (IV.16). [c.111]

    Леблан и Цельман использовали для определения структуры пергидратов методы исследования электропроводности и упругости диссоциации перекиси водорода в этих соединениях Менцель определял влияние добавки перекиси водорода па кажущуюся эквивалентную электропроводность и понижение температуры плавления растворов боратов, а также на коэфи-циенты распределейнй их .в-амшовом спирте. [c.381]

    Электропроводность коллоидного раствора слагается из электропроводности, обусловленной коллоидными частицами, и электропроводности находящихся в растворе электролитов. Если посторонних электролитов в растворе очень мало (высокоочищенные растворы белков и полиэлектролитов), измерениями электропроводности можно воспользоваться для определения удельного заряда или подвижности частиц, однако, в лиофобных золях определить собственную электропроводность коллоидных частиц довольно трудно. Существенное влияние на собственную электропроводность частиц оказывает структура двойного электрического слоя, так как подвижность компенсирующих ионов ограничивается электрофоретическим торможением со стороны коллоидных частиц (более медленно передвигающихся в поле, чем ионы) и скоростью перестройки ионной атмосферы в переменном поле (эффект релаксации). В свою очередь, измерениями электропроводности в широком диапазоне частот (дисперсия электропроводности) пользуются при изучении структуры двойного слоя. В растворах полиэлектролитов (например, полиакриловой кислоты) измерения эквивалентной электропроводности X при различных концентрациях представляют интерес для характеристики формы молекул, так как значения X падают в той области концентраций, в которой расстояния между молекулами полимера становятся велики по сравнению с толщиной двойного электрического слоя (Каргин). Измерения электропроводности коллоидных растворов при их взаимодействии с нейтральными солями (метод кондуктометриче-ского титрования) широко применялись при исследовании состава двойного слоя и процессов вытеснения из коллоидных частиц, например, подвижных Н+-ионов (Паули, Рабинович). [c.131]

    В стакан для титрования наливают отмеренный объем исследуемого раствора. Включают мешалку и титруют раствором Ba l2 порциями по 0,2 мл-, после прибавления каждой порции реагента измеряют R и т . Каждое измерение повторяют не менее 3 раз. При титровании определенная величина электропроводности раствора устанавливается не сразу по прибавлении раствора ВаС1г, а по истечении довольно продолжительного времени, особенно вблизи точки эквивалентности. Электропроводность устанавливается быстрее, если к раствору предварительно добавляется немного порошка сульфата бария. Добавление раствора ведут до тех пор, пока электропроводность начнет значительно возрастать с каждой добавленной порцией реактива. Строят график титрования в координатах V—т и [c.182]

    Прохождение электрического тока сквозь растворы электролитов. Скорость, подвижность и электропроводность ионов. Зависимость скорости ионов от среды, температуры, напряжения, природы самого иона. Влияние гидратации (сольватации) на скорость ионов. Подвижности ионов (необходимо знать порядок величин). Законы Гитторфа. Числа переноса. Изменение концентрации у электродов и закон Фарадея. Практическое значение знания чисел переноса. Эквивалентная электропровэдность при данном и бесконечном разведении. Закон независимого движения ионов. Вычисление электропроводностей ионов л+ и X- из подвижностей ионоз, из чисел переноса и эквивалентной электропроводности при бесконечном разбавлении. Методы определения чисел переноса. Кулонометры. Схема соединения приборов при определении чисел переноса. [c.83]


Смотреть страницы где упоминается термин Эквивалентная электропроводность определение: [c.118]    [c.151]    [c.146]    [c.242]    [c.77]    [c.95]    [c.219]   
Физическая химия растворов электролитов (1950) -- [ c.138 , c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Определение предельной эквивалентной электропроводности

Определение предельной эквивалентной электропроводности слабого электролита

Определение удельной и эквивалентной электропроводности, а также степени и константы электролитической диссоциации

Определение эквивалентной электропроводности кислоты

Опыт 1. Определение удельной и эквивалентной электропроводности, а также степени и константы электролитической диссоциации растворов слабых электролитов

Работа 2. Определение предельной эквивалентной электропроводности электролита

Электропроводность определение

Электропроводность эквивалентная



© 2024 chem21.info Реклама на сайте