Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альдегиды ароматических соединений

    Многочисленные опубликованные в литературе сообщения указывают на то, что подобные явления характерны и для других соединений, содержащих алифатические цепи углерода. Вдоль изобарной линии температуры возникновение заметного свечения, появление и исчезновение холодных пламен и воспламенение зависят от различных условий. Температуры незначительно меняются при изменении отношения топлива к воздуху, если топливо берется в избытке они заметно снижаются для высших м-пара--финов повышаются при замене парафина соответствующим олефином или нафтеном или при замене ненасыщенного циклического соединения типа циклогексена насыщенным типа циклогексана. При этом ароматические соединения намного устойчивее к окислению, чем парафиновые или нафтеновые соединения. Способность углеводородов к окислению тесно связана с детонационной характеристикой топлив, установленной нри моторных испытаниях. Поведение спиртов, альдегидов и эфиров подобно поведению парафинов, но отличается температурными порогами особенно низкие температуры характерны для этилового эфира. [c.251]


    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    Реакции альдегидов и кетонов с ароматическими соединениями имею г много сходства с процессами алкилирования и тоже принадлежа к реакциям электрофильного замещения. Обычными катализаторами являются протонные кислоты (серная, сульфокислоты, хлористый водород, катионообменные смолы), которые переводят карбонильные соединения в положительно заряженный ион, атакующий далее ароматическое ядро через промежуточное образование л- и а-комплексов  [c.549]

    Реакция Гаттермана — Коха заключается во взаимодействии ароматического соединения со смесью хлороводорода и монооксида углерода в присутствии хлорида алюминия. С бензолом реакция идет при повышенном давлении. В результате реакции образуются ароматические альдегиды  [c.392]

    При реакции с ароматическим соединением сначала образуется гидрохлорид имина, при гидролизе которого получается альдегид. [c.394]

    Ароматические альдегиды — органические соединения, в молекулах которых альдегидная группа связана с бензольным ядром или углеродом боковой цепи. Представителем альдегидов первого [c.316]


    I. К каким классам органических соединений относится фени-лин а. Ароматическое соединение б. Альдегид в. Кетон г. Ангидрид д. Сложный эфир [c.142]

    Термин ароматические соединения , присвоенный в начале XIX столетия бензолу и его многочисленным производным, чисто случаен по своему происхождению.- Первыми известными веществами этого ряда (бензойный альдегид, бензойная кислота, толуол) были соединения, имеющие приятный запах. Их выделяли из ароматных бальзамов или других благовонных веществ природного происхождения. Родоначальник ароматических углеводородов — бензол СеН . В 1865 г Августом Кекуле впервые была предложена структура бензола, которая объясняла свойства этого вещества. [c.346]

    Ароматические альдегиды — органические соединения, где функциональная группа —СНО соединена непосредственно с ароматическим кольцом, например  [c.137]

    Кинетическими исследованиями показано, что во всех реакциях этого типа вторая стадия идет значительно быстрее, чем первая, вследствие чего остановиться на первом ее этапе в обычных условиях не удается. Это объясняется высокой реакционной способностью карбкатиона бензильного типа возникающего в конце первого этапа, который быстрее, чем исходный альдегид взаимодействует со второй молекулой ароматического субстрата. Если, однако, в реакционную массу ввести какое-нибудь вещество, способное блокировать карбкатион, реагируя с ним быстрее чем ароматическое соединение, то процесс останавливается на этой стадии. [c.126]

    Поэтому Гаттерман предложил получать альдегиды, пропуская в смесь ароматического соединения и хлорида алюминия безводные оксид углерода (П) и хлороводород  [c.136]

    Реагируя с ароматическим соединением, он образует промежуточный продукт, при гидролизе которого получается альдегид- [c.137]

    Известны также случаи окисления хромовой смесью ароматических соединений с боковыми цепями до ароматических альдегидов . [c.658]

    Этот метод синтеза, рассмотренный в гл. 10 (разд. Ж), посвященной альдегидам, — один из наиболее обычных методов применения реактивов Гриньяра для получения альдегидов. Реакцию можно закончить получением ацеталя или, если нужно, провести гидролиз и получить альдегид. Эту реакцию применяют не только к насыщенным алифатическим и ароматическим соединениям Гриньяра, но также и к реактивам Гриньяра, содержащим тройную связь [4, 5], и к пиридинам (пример 6.2). Выходы бывают различными от удовлетворительных до хороших. [c.606]

    Катализируемые кислотами реакции ароматических соединений с другими альдегидами или кетонами [c.433]

    Конденсация альдегидов и кетоноа с ароматическими соединениями 549 Синтез ацеталей и реакция Принса. Получение изопрепа. . . 554 Конденсация альдегидов и кетонов с азотистыми основаниями. Получение капролактама.............. [c.6]

    Реакционная способность карбонильных и ароматических соединений изменяется в данных процессах в обычном порядке. 1 алогенбензолы еще способны к зтпм превращениям, но ароматические вещества с более электроотрицательными группами в реакцию не вступают. Наоборот, фенол взаимодействует с реакционно-способными альдегидами (особенно с формальдегидом) не только нри кислотном катализе, но и при щелочном, что обусловлено пе-ре Содом фенола в более активную форму фенолята, способного прямо взаимодействовать с альдегидом  [c.550]

    Кинетика этих реакций при кислотном катализе удовлетворяет VJ авнению г=/ганЧ-[АгН] [R HO], показывающему, что самой медленной стадией является взаимодействие молекулы альдегида, аь.тивпрованной протоном, с ароматическим соединением. [c.550]

    Активный предварительно восстановленный хромит меди восстанавливает альдегиды и кетоны при комнатной температуре и давлении 200 атм, хотя, чтобы восстановить карбонильную группу в ацетильных производых ароматических соединений, требуется повысить температуру до 100°С /2, 8/. Чем менее активен катализатор, тем более высокие температуры требуются для восстановления карбонильных групп обоих типов. При гидрировании акролеина образуется немного аллилового спирта и значительное количество -пропилового спирта /2/, даже если процесс проводят на самых активных катализаторах и в самых мягких условиях. [c.234]

    В 1947 г. появилась работа Кюллиса и Гиншельвуда [501, в которой изучалось пижнетемпературное окисление пентана и гексана в статических условиях в кварцевом реакционном сосуде. Анализ продуктов по ходу реакции проводился на перекиси иодометрическим методом, на сумму альдегидов — бисульфитным, на формальдегид — колориметрическим методом и, наконец, на кислоты — титрованием щелочью. Гексан брался для реакции двух сортов I—свободный от ароматических соединений, но по подвергшийся очистке, и II — специально очищенный. Оказалось, что оба гексана ведут себя различно при окислении, причем гексан II окисляется легче гексана I. Так, при Т = 202°С и / б,ц = 250. им рт. ст. (смесь [c.224]


    АНТИОКИСЛИТЕЛИ (ингибиторы окисления) — вещества, предотвращающие или замедляющие окисление молекулярным кислородом. В качестве А. применяют ароматические соединення, содержащие с()енолы1ые — ОН или аминогруппы. (гидрохинон, Р-нафтол, а-наф-тиламин и др.). Ничтожные количества этих соединений (0,01—0,001%) могут надолго приостановить окисление углеводородов, альдегидов, жиров и др. Л. имеют большое практическое значение стабилизация бензи(юв, снижение образования смолы в маслах, защита каучука от старения, жиров от порчи н др. [c.28]

    Форму, аналогичную кривой 2 рис. 3.9, имеют кривые зависй-мости 0орг от Ег на для многих веществ спиртов, альдегидов и гликолей со сравнительно небольшой длиной цепи (лс<4), ряда ароматических соединений, нитросоединений и др. [c.114]

    В средней области спектра (от 115 до 160 м. д.) располагаются сигналы замещенных С-атомов этиленов и циклопропенов, углеродных атомов в ароматических соединениях, нит-рильных и изонитрильных группах и азотистых производных альдегидов и некоторых кетонов, а также в эфирах угольной кислоты. [c.145]

    Пик иона [М—Н1+, сравнимый по величине с интенсивным пиком молекулярного иона, чаще всего свидетельствует либо об отсутствии алкильных групп в молекуле, либо о наличии только метильных заместителей. Поэтому пики ионов [М—1] при слабых пиках ионов [М—СаНай+1]+ наиболее типичны для первых представителей гомологических рядов СН4, С2Н 4, бензола, нафталина, СН2О, анилина, индола, хинолина и других, а также для метилзамещенных ароматических соединений. У некоторых классов веществ ионы [М—Н]+ характеристичны для всех гомологов. Например, у ароматических альдегидов АгСНО легко отщепляющийся атом водорода входит в общую для всего ряда функциональную группу. [c.182]

    Формилирование ароматических соединений под действием Zn( N)2 и НС1 называется реакцией Гаттермана (обзор см. [269]). В отличие от реакции 11-17 этот метод можно с успехом применять к фенолам и их простым эфирам, а также ко многим гетероциклическим соединениям, но не к ароматическим аминам. В оригинальном варианте этой реакции субстрат обрабатывали H N, НС1 и Zn b однако использование Zn( N)2 и НС1 (H N и Zn l2 генерируются in situ) делает проведение этой реакции более удобным и не снижает выхода продукта. Механизм реакции Гаттермана не исследовался подробно, но известно, что первоначально образуется азотсодержащее соединение, которое обычно не выделяют, а сразу гидролизуют до альдегида. Для промежуточного продукта предполагается структура, приведенная в уравнении реакции выше. Реакцию Гаттермана можно рассматривать как частный случай реакции 11-29. [c.361]

    Конденсация ароматических соединений с альдегидами или кетонами называется гидроксиалкилированием [295]. Эта реакция используется для синтеза спиртов [296], хотя часто первоначально образующийся спирт взаимодействует с другой молекулой ароматического соединения (реакция 11-13), давая продукт диарилирования. Для этой цели реакция оказывается весьма полезной, примером может служить синтез ДДТ  [c.366]

    Какова структура ароматического соединения состава СгНеСЬ, если при гидролизе его в щелочной среде образуется альдегид rHgO, а при окислении перманганатом калия — вещество состава СуНбОг, реагирующее со щелочью с образованием соли  [c.51]

    Следующая вертикальная колонка показывает процесс хлорирования этана. При гидролизе полученных хлорпроизводных образуются кислородные соединения (спйрты, альдегиды, карбоновые кислоты), которые в свою очередь связаны друг с другом окислительно-восстановительными переходами. В нижней части схемы показаны некоторые превращения, ведущие к ароматическим соединениям. [c.213]

    Для введения в ароматические соединения углеродсодержащих групп широк используются альдегиды, кетоны и их производные. Первичными продуктами этих реакций являются ароматические спирты — идет алкоголирование ароматического субстрата  [c.125]

    Продукт гидрирования обладает меньшей сорбционной способностью и вытесняется с активных центров катализ-атора новой молекулой олефина или ароматического соединения. Таким же обра- зом гвдрируются альдегиды и кетоны до спиртов, нитрилы, амиды и азометины до аминов, нитро- и нитрозосоединения до аминов. Все эти процессы имеют очень широкое практическое применение. [c.295]

    Эта реакция сильно павпспт от строения реагирующего карбонильного соединения и от строения спнрга. Первичные спирты реагируют лучше, чем вторичные н третичные. Трудность взаимодействия карбонильных соединений возрастает в последовательности формальдегид, алифатические альдегиды, а,р-неиасыщегшые альдегиды ароматические альдегиды, кетоны. Циклические кетали очень легко образуются лгз ацетона и 1,2- и 1,3-гликолрй. [c.354]

    Вероятно, в процессе реакции из хлористого водорода и цианистого водорода образуется хлористый формилимид, который конденсируется с ароматическим соединением, причем отщепляется хлористый водород и образуется альдимин . При нагревании с разбавленной соляной кислотой альдимин гидролизуется в соответствующий альдегид  [c.299]

    В качестве С—Н-кислотных соединений можно использовать кетоны, альдегиды, алифатические нитросоединения, синильную кислоту и ацетилен. Кроме того, по Манниху можно аминоалки-лировать ароматические соединения, легко поддающиеся электро-фильному замещению (см. табл. 69), например, фенолы или гетероциклические соединения (тиофен, пиррол, индол). Из индола таким путем получают грамин  [c.152]

    Как и при алкилировании фенола и других ароматических соединений, в качестве источника алкильных групп можно использовать спирты. Так, трет-бутиловый спирт в присутствии активированной глины взаимодействует с тиофеном, образуя тре/и-бутил- и ди-трет-бутилтиофепы. Сравнительно недавно в качестве катализатора для этой реакции удалось использовать хлорное олово [19]. Альдегиды, в частности формальдегид, взаимодействуют с тиофеном в положении 2,5, образуя полимеры эта реакция катализируется сильными минеральными кислотами. Некоторые альдегиды, например бензальдегид, в присутствии активированных глин могут конденсироваться с тиофеном, давая мономерный ди(2-тиенил)фенилметан полимеры при этом не образуются. [c.286]


Смотреть страницы где упоминается термин Альдегиды ароматических соединений: [c.165]    [c.111]    [c.354]    [c.434]    [c.190]    [c.112]    [c.181]    [c.370]    [c.13]    [c.798]    [c.40]    [c.87]    [c.6]   
Препаративная органическая химия Реакции и синтезы в практикуме и научно исследовательской (1999) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегиды ароматические



© 2025 chem21.info Реклама на сайте