Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий ртутью

    Пятиоксид ванадия Ртуть. ... Серная кислота Сурьма. ... Тетраэтилсвинец [c.32]

    Железо, хром, молибден, ванадий, ртуть мешают определению [c.153]

    Присутствие железа, хрома, молибдена, ванадия, ртути мешает определению. [c.362]

    Пыль пятиоксида ванадия Ртуть металлическая [c.351]

    Изучалось также влияние добавки различных химических веществ во время сульфирования углеводородов на ускорение или завершение реакции (при использовании серной кислоты), на уменьшение образования побочных продуктов (при применении высококонцентрированного олеума или ЗОз) или на изменение соотношения образующихся изомеров. Эти добавки рассматриваются как катализаторы или промоторы сульфирования. Но так как ароматические углеводороды легко сульфируются, вопросу ускорения этой реакции но уделялось достаточного внимания. Отмечается, что при высокой температуре (около 250°) сульфирование (главным образом моно- и некоторое количество ди-) бензола ускоряется добавлением солей металлов, особенна солей натрия и ванадия, добавленных вместо [5]. Ускорение введения второй сульфогруппы, которое происходит значительно труднее, чем первое, достигается добавлением различных соединений металлов [10, 73, 91], а ртуть может быть использована для облегчения введения третьей сульфогруппы [1031. [c.518]


    Водород, полученный из каменного или бурого угля, а также из тяжелой нефти или гудрона, может содержать серу, мышьяк, сурьму, селен, ртуть, ванадий, никель и почти все вещества, находящиеся в каменноугольной золе. В водороде могут быть также пары смазки из компрессоров, шарнирных соединений, [c.105]

    Из хлоридных растворов с большим коэффициентом распределения извлекаются молибден (VI), теллур (IV), уран (VI), цинк индий, железо (III), палладий, золото, ртуть, хуже германий, галлий, цирконий, торий, ванадий (V), кадмий, медь, родий (III), платина (IV), совсем плохо кобальт, никель и др. металлы. [c.40]

    В смолисто-асфальтеновых веществах концентрируются почти все металлы, находящиеся в нефти. При фракционировании асфальтенов и смол металлы распределяются неодинаково. Так, при фракционировании асфальтенов ванадий в большей степени переходит в неполярную часть (1,13—2,16 по сравнению с 0,58—0,6 в полярной). При хроматографировании смол было найдено,. что железо, никель, сурьма и бром преимущественно концентрируются в менее полярных, а натрий, хром, ртуть, серебро, кобальт, марганец и хлор — в более полярных фракциях [376]. Эти данные могут характеризовать комплексообразующую способность различных фракций по отношению к разным элементам. [c.172]

    При электролизе чистых растворов поваренной соли выход амальгамы по току может приближаться к 100%. Однако при наличии в растворе примесей солей тяжелых металлов доля тока, расходуемая на выделение водорода, существенно возрастает. Особенно сильное влияние на выделение водорода оказывают соли германия, ванадия, хрома и платины. Действие этих солей объясняется тем, что они восстанавливаются на ртутном катоде до свободного металла и, будучи нерастворимыми в ртути, плавают на новерхности в виде так называемого амальгамного масла . Так как перечисленные металлы обладают низким перенапряжением водорода, последний начинает выделяться на этих участках. [c.160]

    Помимо ртути, при добавлении сульфида натрия нз раствора удаляются также соединения хрома, ванадия, молибдена и других металлов, вредных для электролиза, [c.176]

    Важнейшим методом разделения металлов является их электролитическое выделение на ртутном катоде. Поскольку перенапряжение водорода на ртути превышает 1 В, из раствора можно выделить многие металлы. Однако алюминий, скандий, титан, ванадий, вольфрам и некоторые другие даже и в этих условиях не могут быть выделены, а ионы щелочных и щелочноземельных металлов восстанавливаются только в щелочном растворе. Напротив, железо можно успешно удалить электролитическим путем из переведенного в раствор алюминиевого сплава. Указанный способ можно также применять для очистки растворов урана. Выделение веществ на ртутном катоде чаще всего проводят при контролируемом потенциале, опти- [c.265]


    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    По магнитным свойствам различают диамагнитные металлы (выталкиваемые из магнитного поля) и парамагнитные (втягиваемые магнитным полем). Диамагнитны медь, серебро, золото, цинк, кадмий, ртуть, цирконий. Парамагнитными считают скандий, иттрий, лантан, титан, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, рутений, радий, палладий, осмий, иридий, платину. Железо, кобальт и никель обладают ферромагнетизмом, т. е. особенно высокой магнитной восприимчивостью. [c.257]

    Прямым комплексонометрическим титрованием можно определять многие ионы металлов магния, кальция, стронция, бария, скандия, иттрия, лантаноидов, титана, циркония, гафния, тория, ванадия, молибдена, урана, марганца, железа, кобальта, никеля, меди, серебра, цинка, кадмия, ртути, галлия, индия, таллия, свинца, висмута. Скачок кривой титроваиия при этом находят с помощью подходящего индикатора или физико-химического метода. Если титруемый раствор содержит несколько ионов металлов и реальные константы устойчивости соответствующих комплексонатов мало отличаются между собой, эти ионы титруются вместе. Когда логарифмы реальных констант отличаются более чем на 4 единицы, ионы металлов можно титровать последовательно, допустив при нахождении первого скачка погрешности, не превышающие 1%. На практике это условие выполняется довольно редко и возможности прямого комплексонометрического титрования обычно расширяют маскированием. [c.225]

    Каково число грамм-атомов л атомов в а) 80,17 г кальция б) 5,09 г ванадия в) 9 ,1 г рения г) 2,0 г ртути  [c.20]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]

    Реакции сульфирования очень часто проводят в присутствии катализаторов наиболее активным катализатором при сульфировании бензола является смесь сульфата натрия и пятиокиси ванадия аналогичное действие оказывают сульфаты ртути, кадмия, алюминия, свинца, мышьяка, висмута и железа  [c.243]

    Вышли первые пять томов восьмитомного справочника по термодинамическим свойствам соединений цветных металлов Я. И. Герасимова, А. Н. Крестовникова и А. С. Шахова . В отличие от названных выше изданий в нем приводятся не избранные, а все данные, имеющиеся в литературе, о термодинамических свойствах этих веществ и различных реакций, в которых они принимают участие. Вышедшие тома охватывают соединения цинка, меди, свинца, олова, серебра, вольфрама, молибдена, титана, циркония, ниобия, тантала, алюминия, сурьмы, магния, никеля, висмута, кад.мия, ванадия, ртути и бериллия. [c.78]

    Тамман и Хин1обер нашли, что при разламывании металлических стерженьков в ртути поверхности разлома сурьмы и висмута полностью смачиваются ртутью почти полная смачиваемость наблюдается и для марганца. Однако изломы железа, кобальта, никеля, хрома, молибдена и вольфрама амальгамируются лишь частично, а мышьяк, тантал и ванадий ртутью не смачиваются. [c.182]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]


    Серная кислота. Этот вопрос более полно будет рассмотрен в главе об очистке. Приведем здесь только общие замечания. Серная кислота с этиленовыми углеводородами дает реакции трех родов 1) Образование серных эфиров. Такая реакция вызывается некоторыми катализаторами, например солями серебра и ртути, окисью ванадия и т. д. эти серные эфиры при гидролизе дают спирты. Этилен дает этиловый спирт. С высшими углеводородами можно получить при действии HaSOi также вторичные и третичные спирты. 2) Концентрированная серная кислота вызывает реакции полимеризации этиленовых углеводородов, причем склонность к полимеризации возрастает вместе с молекулярным весом. 3) Наконец при употреблении во время очистки нeпpeдed ьныx фракций нефти весьма крепкой серно й кислоты происходит выделение SOj, что указывает на окисление нефти и восстановление серной кислоты. [c.31]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Содержание веществ в загрязненных и нормативно-очищенных сточных подах (тонн) ванадий, висмут, кадмий, марганец, мышьяк, никель, пестициды, ртуть, свинец, серебро, сурьма, формальаегид, цианамиды и другие специфические загрязняющие вещества, характерные для данного вида производства (кг) [c.425]

    При исследовании каталитического действия различных сульфатов и окислов на скорость сульфирования бензола 70%-ной кислотой при 242—260° [17] найдено, что самым активным катализатором является смесь сульфата натрия и пятиокиси ванадия. Бензол и другие углеводороды количественно сульфируются при комнатной температуре избытком серной кислоты в присутствии сухой инфузорной земли или животного угля [18]. Бензолсульфо-кислЬта вместе с другими продуктами реакции образуется при действии иода и серной кислоты на бензол при 170—180°, а также при нагревании серной кислоты с иодбензолом [19]. Гладкое превращение дифенилртути в ртутную соль бензолсульфокислоты под действием серного ангидрида [20] может дать некоторые указания на механизм каталитического влияния солей ртути на некоторые [c.11]

    При обработке 1-нафтиламина 1 молем серной кислоты [701] при 180—200° в условиях процесса запекания (стр. 59) единственным продуктом реакции является 4-сульфокислота. Последняя получается также с КНз(304)2 при 200° [702]. Нагревание 200 г амина с 157 г 96%-ной серной кислоты и с 600 г сульфата натрия в тщательно соблюдаемых условиях [703а] (желательно сильное перемешивание и температура, не превышающая 210°) приводит в образованию нафтионовой кислоты с выходом 80%, считая на сырой продукт. Удаление невстзгпившего в реакцию нафтиламина осуществлено при помощи диаз0тированного бензидина. В литературе имеются подробные данные о влиянии добавки сульфатов железа, меди, алюминия, никеля, серебра и ртути, а также пятиокиси ванадия [7036] на скорость реакции сульфирования 1-нафтиламина и на строение образующихся при этом соединений. Эффект, вызываемый этими добавками, невелик и, повидимому, практически бесполезен. Высший достигнутый выход 2-сульфокислоты составлял 3,3%. [c.108]

    В отсутствие катализатора реакция сульфирования пиридина при температуре ниже 300° почти незаметна. В присутствии сульфата ртути [896] при 225° происходит замещение в положении 3, а при температуре выше 350° образуется также около, 1% 2-сульфокислоты [895]. Разделение этих изомеров весьма за труднительно и только 3-изомер получен в чистом состоянии. Сульфат ванадия заметно не катализирует этой реакции. При нагревании пиперидина с серной кислотой [8976] образуется [c.135]

    Соединения переходных металлов, например галогениды платины (II), палладия (И), никеля (И), ртути (II), олова (II, IV), железа (III), ванадия (III), сурьмы (V), а также ионыметал-лов (Fe +, Сг +, и др.) способны образовывать комплексные сое- [c.348]

    К существенным противоречиям короткой формы периодической системы относили, пребывание элементов побочных подгрупп — марганца, технеция, рения в одной группе с галогенами хрома, молибдена, вольфрама в группе с халькогенами ванадия, ниобия, тантала в группе с пниктогенами меди, серебра, золота — со щелочными металлами цинка, кадмия, ртути — со щелочноземельными металлами и т. д., — а также и осложнения, вносимые элементами побочных подгрупп в порядок изменения свойств элементов в вертикальных группах. Однако на самом деле эта особенность короткопериодной формы может рассматриваться для элементов, начиная со второй и и кончая седьмой группой, скорее как преимущество по сравнению с другими формами — в одной группе находятся вместе как полные, [c.26]

    К настоящему времени методами ФЭС исследовано небольшое число комплексов метил- и диметилпроизводные ртути, кадмия, цинка, ферроцен, карбонилы и нитрозилкарбонилы никеля, марганца, ианадия, (РРз) , Р1(РРз)4, летучие хлориды титана и ванадия и др., а также многочисленные органические и неорганические соединения, которые могут фигурировать в роли лигандов. [c.265]

    К четвертой аналитической груапе относятся катионы меди Си" , кадмия Сдг , ртути(П) висмута(И1) мышьяка Аз и Аз сурьмы и 8Ь , олова 8п и 811 . Сюда же иногда относят и катионы зо-лота(1П) Аи " , таллия(Ш) свинца РЬ " , германия Ое , ванадия молибдена Мо " , вольфрама оения Ке , иридия палладия Рё , платины Р1 . [c.294]

    Температурная зависимость процесса растворения водорода в металлах определяется знаком теплового эффекта. Для многих металлов (хром, железо, кобальт, никель, медь, серебро, платина, молибден и др.) ДЯ > О и с повышением температуры растворимость растет. Экзотермически поглощают водород (ДЯ < < 0) титан, цирконий, гафний, ванадий, ниобий, тантал, торий, уран и РЗЭ за счет образования металлидных фаз внедрения. В то же время есть металлы, в которых водород практически не растворяется. Это вольфрам, золото, цинк, кадмий, ртуть, индий. Если при растворении водорода кристаллохимическое строение металла не изменяется, в результате возникают твердые растворы внедрения. При растворении значительного количества водорода, как правило, кристаллохимическое строение металла-растворителя претерпевает изменения. Тогда образуются фазы внедрения. [c.295]

    На анодах при работе электролизера выделяются хлор и кислород или диоксид углерода в зависимости от вида используемых анодов. Кроме того, с анодным газом смешивается водород, образующийся на ртутном катоде. При норма 1ьных условиях электролиза хлоргаз содержит 0,5% (об.) водорода. Однако при нарушениях процесса электролиза, например при нарушении циркуляции ртути либо попадании в раствор или ртутный катод железа и примесей (так называемых амальгамных ядов —хрома, ванадия и некоторых других) возможно усиленное выделение водорода. Это, помимо снижения выхода по току щелочного металла на катоде, приводит к снижению качества хлоргаза и за счет подщелачивания раствора резко повышает содержание растворенного хлора в анолите, что может нарушить в дальнейшем стадию очистки раствора. При заметном повышении содержания водорода в хлоргазе отдельных ванн эти ванны должны быть отключены и устранены причины (повреждение гуммировочного слоя, снижение скорости циркуляции ртути и др.), приведшие к повышению содержания водорода в хлоргазе. [c.91]

    Чистый раствор VO l можно получить, восстанавливая металлической ртутью раствор пятиокиси ванадия в соляной кислоте  [c.79]

    Нафтохинон можно получить также из сульфата 1-аминонафто-ла-2 окислением бихроматом калия в присутствии серной кислоты или из нафталина окислением перекисью водорода в присутствии окиси ртути, ванадия, хрома или окиси молибдена . [c.684]


Смотреть страницы где упоминается термин Ванадий ртутью: [c.587]    [c.125]    [c.343]    [c.118]    [c.17]    [c.185]    [c.32]    [c.203]    [c.269]    [c.100]    [c.193]    [c.306]    [c.562]   
Новые окс-методы в аналитической химии (1968) -- [ c.210 ]




ПОИСК







© 2025 chem21.info Реклама на сайте