Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины ароматизация

    Термодинамически наиболее выгодны распад циклопарафинов до элементов и дегидрирование циклопентанов до циклопентадиенов, циклогексанов — до соответствующих ароматических углеводородов. Фактически при термическом разложении циклопарафинов образуются главным образом низшие олефины (этилен и пропилен), метан, этан, бутилен, водород и циклопентадиены. Термодинамически возможные реакции ароматизации и изомеризации в олефины с тем же числом углеродных атомов не протекают. [c.68]


    Термический крекинг парафина. Термический крекинг тверд01 0 или мягкого парафина применяют в промышленности для целевого гюлучения жидких олефииов с прямой цепью из 5—20 атомов углерода. По технологии это производство во многом аналогично пиролизу и термическому крекингу нефтепродуктов. Расщепление также осуществляется в трубчатой печи, но при 550°С, когда еще не протекают глубокие процессы конденсации и ароматизации Для повышения выхода олефинов рекомендуется применять В0Д1Н0Й пар. Во избежание вторичных реакций проводят крекинг [c.44]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    Вторым шагом по пути решения проблемы глубокого крекинга должно явиться изучение взаимодействия продуктов между собой, что позволит включить в проблему крекинга комплекс вторичных реакций, как полимеризация, конденсация, ароматизация и др. Учет этих возмущений , так сказать, второго рода потребует выяснения связи между этой категорией вторичных процессов и реакциями радикально-цепного распада. Связь между этими процессами несомненно существует, так как полимеризация и другие названные процессы также, по-видимому, происходят по радикально-цепному механизму и поэтому могут инициироваться радикалами первичного крекинга, хотя высокие температуры крекинга менее благоприятны для реакций роста полимерных цепей. С другой стороны, крекинг самих олефинов, согласно концепции В. В. Воеводского, может происходить радикаль-но-цепным путем. [c.6]

    Дегидрирование бутанов Гидрирование чистым водородом при невысоких давлениях, гидрирование олефинов Ароматизация парафиновых углеводородов Гидрогенизация жиров [c.67]


    Таким образом, мы располагаем обширными научно-исследовательскими и промышленными данными по каталитической ароматизации различных видов нефтяного сырья для производства низкомолекулярных ароматических углеводородов, которые наряду с олефинами являются основным сырьем нефтехимической промышленности. [c.295]

    Непредельные углеводороды, образующиеся в результате реакций крекинга, расщепляются по углерод-углеродным связям, изо-меризуются, полимеризуются, а также подвергаются реакциям ароматизации. Важной реакцией является межмолекулярное перераспределение водорода, заключающееся в насыщении водородом олефинов за счет образования бедных водородом продуктов уплотнения. Указанные выше процессы обусловливают, с одной стороны, получение стабильных бензинов благодаря малому содержанию в них непредельных углеводородов, а с другой — образование на поверхности катализатора коксовых отложений. Нафтеновые углеводороды в присутствии алюмосиликатов подвергаются дегидрированию и расщеплению связей С—С как с раскрытием колец, так и с отрывом боковых цепей. В результате превращений нафтенов образуются ароматические углеводороды, повышающие октановые чивла бензипов и некоторые количества продуктов уплотнения, частично остающихся на поверхности катализатора. Парафиновые углеводороды крекируются с образованием насыщенных и ненасыщенных соединений. Последние далее подвергаются вторичным превращениям. [c.66]

    При взаимодействии диенов с олефинами (диеновый синтез) происходят циклизация углеводородов с прямой цепью и ароматизация образующихся циклоолефинов  [c.38]

    Ранее уже говорилось, что прп пиролизе нефтепродуктов с щ лыо получения низших олефинов происходит ароматизация углеводородов с прямой цепью. В результате этого в жидких продук- [c.60]

    В условиях каталитического риформинга концентрация олефинов соответствует равновесной 168, 69]. Это обстоятельство имеет существенное значение, поскольку олефины играют важную роль в качестве промежуточных продуктов в реакциях каталитического риформинга, в частности в реакциях ароматизации парафинов. [c.34]

    В качественном отношении состав смол, образующихся нри пиролизе, всегда однороден и но зависит от характ(фа исходного материала, который мо/кет состоять пз олефинов и парафинов, быть /кидким и газообразным. Из этого можно заключить, что в основе процессов ароматизации и низко-молекулярных, н высокомолекулярных углеводородов лежит один и тот же механизм реакции. [c.112]

    Ниже приведены результаты продолжительного пиролиза нефтяных остатков с целью производства олефинов при одновременной ароматизации. [c.122]

    Процессы получения ароматических углеводородов. В последние годы разрабатываются новые процессы ароматизации — неокислительные и окислительные, например процесс дегидроцикло-димеризации низших парафиновых и олефиновых углеводородов с использованием платиновых или окисных катализаторов переменной валентности (хрома и др.) на носителе — окислах алюминия при 500—600° С. Выход ароматических углеводородов и глубина превращения сырья увеличиваются с возрастанием молекулярной массы исходного углеводорода. Основными продуктами такого синтеза являются бензол и толуол при использовании в качестве сырья пропана, а применяя пентан, можно получить бензол, толуол и ксилолы. Синтез состоит из следующих стадий дегидрирования до MOHO- и диолефинов димеризации олефинов ароматизации димера изомеризации, трансалкилирования и алкилирования первично образовавшихся ароматических углеводородов. [c.241]

    Как уже указывалось, мо/кпо также крекировать пропан в этилен и дегидрировать этан. Можно вестп процесс при условиях, обеспечивающих максимальный выход олефинов при только частичной ароматизации исходного сырья, но можно также путем применения особо кестких условий (высокая температура, продолжительное пребыванне продукта в печи) осуществить полную ароматизацию жидких продуктов реакции. [c.61]

    Рургаз-процесс представляет собой процесс пиролиза, также предуслш-тривающий полную ароматизацию жидкой части продуктов [31]. При использовании остатков перегонки нефти в качестве сырья получают около 40% вес. олефинов от исходного продукта, из которых примерно 50% этилена. [c.61]

    При низких температурах это выражается в интенсивной изомеризации и образовании нцзкомолёку-лярпых олефинов, при средних температурах усиливаются реакции дегидрирования (образование диолефиновых углеводородов) и ароматизации, при повышенных температурах дополнительно получаются газ и кокс. [c.17]

    Как видно из приведенных в табл.8.5 данных, при переходе от реактора с псевдоожиженным слоем к лифт — реактору улучшается селективность крекинга, возрастает содержание олефинов С -С в газе и содержание олефинов в бензине. Однако вследствие "средней" активности катализатора Цеокар —2 в лифт — реакторе не достига — ютс5( достаточная конверсия сырья и выход бензина, из — за неза — вершенности вторичных реакций изомеризации и ароматизации [c.127]


    Таким образом ароматизацию, важный фактор повышения октанового числа бензинов каталитического крекинга, можно охарактеризовать, как вторичную реакцию, идущую через стадию полимеризации или конденсации олефинов, получаемых при крекинге различных исходных соединений. Простые циклоолефины С5 и Се, циклонентен и циклогексен 16] образуют значительное количество ароматических углеводородов, но с относнтельио высокой температурой кипения, что может быть результатом быстрой полимеризации или конденсации таких олефинов, с последующей изомеризацией кольца, переносом водорода и крекингом. [c.135]

    Каталитический риформиг бензинов крекинга. Во многих случаях нуждаются в обессеривании, гидрировании и повышении октанового числа бензины, полученные в процессах крекинга. Так как октановое число бензинов крекинга в большой степени зависит от содержания в них олефинов, гидрирование последних приведет к заметному снижению октанового числа. Таким образом, для повышения октанового числа до требуемой величины необходимо прибегать к таким реакциям, как ароматизация, изомеризация и гидрокрекинг. Выше приводятся результаты платформинга смеси 70% дистиллята, полученного при перегонке нефти до кокса месторождения Санта-Мария и 30% бензина прямой гонки из нефти месторождения Лос Анжелос. [c.187]

    Содержание ароматических углеводородов в жидких продуктах, получаемых при разных процессах ароматизации, составляет от 30—60% (катализат риформиига) до 95—97% (сырой бензол и смола коксования каменного угля). Из других углеводородов в них присутствуют олефины (от 2—3 до 15%), парафины 1 иафте-ны. Кроме того, в продуктах коксования находятся некоторые кислородные соединения (фенол, кумарон), пиридиновые основания, а также сернистые гетероциклические соединения (тиофен, тиото-леи, тионафтен), по температуре кипения близкие к еоответстную-щим ароматическим углеводорс там. [c.69]

    При депарафинизации на цеолитах керосино-газойлевых и дизельных фракций протекают в небольших масштабах реакции крекинга н-алканов с образованием олефинов и других углеводородов. Олефины подвергаются изомеризации, ароматизации и полимеризации [7]. Размер молекул образующихся соединений больше размера входных окон цеолита СаА, поэтому они могут быть десорбированы однсаременно с н-алканами и остаются в адсорбционных полостях цеолита, постепенно подвергаясь крекингу и дальнейшей полимеризации. В результате активность цеолитов постепенно снижается. Этому способствует также накопление в адсорбционных полостях находящихся в сырье сернистых и полярных соединений, содержащих гидроксильные, карбонильные, нитро- и аминогруппы. [c.180]

    Поскольку скорость дегидрирования парафинов до олефинов на платине велика, лимитирующей стадией бифункциональной реакции дегидроциклизации должна быть циклизация олефина на кислотных центрах алюмоплатинового катализатора. Поэтому увеличение кислотности алюмоплатинового катализатора, а следовательно, и содержания в нем галогена, должно способствовать увеличению скорости ароматизации парафино1Э, [c.35]

    Дегидрирование парафинов Q—Са не применяется для производства соответствующих олефинов, получаемых в настоящее время олигомеризацией олефинов Ся—Q в мягких условиях (например, процесс Димерсол , разработанный Французским институтом нефти, — см. гл. 10). Ароматизация парафинов Q— g является одной из важнейших реакций процесса каталитического риформинга (см. гл. 5). Дегидроциклизация индивидуальных парафинов (гексана в бензол и гептана в толуол) интенсивно изучалась с целью разработки технологического процесса (Казанский, Дорогочинский — в СССР, Арчибальд и Гринсфельдер — в США) в присутствии промотированного алюмо-хромового катализатора. При 550 °С выход бензола и толуола составлял 60—70% при использовании в качестве сырья индивидуальных углеводородов чистоты 98—99%. Разработан вариант процесса в подвижном слое катализатора, что позволило обеспечить непрерывность рабочего цикла и подвод теплоты, необходимой для компенсации эндотермического теплового эффекта дегидроциклизации (см. табл. 2.1). Однако перспективы его внедрения в настоящее время неопределенны и, вероятно, будут обусловлены экономической эффективностью по сравнению с современными модификациями риформинга жесткого режима [платформинг низкого давления в подвижном слое катализатора, разработан фирмой Universal Oil Produ ts—UOP (США) — см. гл. 5]. Наибольшую роль дегидроциклизация парафинов Q—Се играет в процессе Аромайзинг , разработанном Французским институтом нес и. По рекламным данным, процесс осуществляется в подвижном слое полиметаллического алюмо-платинового катализатора при давлении < 1 ЛШа (приблизительно 0,7 МПа) и температуре 540—580 X. Доля реакции дегидроциклизации парафинов в образовании ароматических углеводородов превышает 50% (см. гл. 5). [c.59]

    Циклизация и ароматизация. Вторичной, реакцией олефинов,, протекающей на более поздних стадиях процесса, явлйется их частичное дегидрирование. В результате образуются диены или происходит расщепление олефинов на диены и алканы. Вторичные реакции между олефинами и диенами могут привести к образованию циклоалканов. Ароматические углеводороды получаются в результате дегидроциклизации циклоолефиновых или нафтеновых углеводородов, образовавшихся на начальных стадиях процесса. [c.51]

    Дальнейшие исследования, как в СССР, так и за рубежом, позволили вскрыть новые возможности каталитического риформинга. Так, Б. А. Казанским, А. Л. Либерманом и другими было показано, что алканы над платинированным углем могут замыкаться и в пятичленное циклопентановое кольцо (Сз-дегидроциклизация). Оказалось также, что в реакции ароматизации могут вовлекаться и олефиновые, и циклопентановые углеводороды. Олефины обра- [c.127]

    Для различных групп углеводородов степень ароматизации увеличивается по данным Хуга и др. (203) в следующем порядке парафины, соответствующие алифатические олефины, шестичленные нафтеновые углеводороды, шестичленные циклоолефины. Сергиенко (128а) изучал каталитическое превращение изоамилбензола при 475°. Катализатором служила окись хрома на окиси алюминия с добавкой промотера из соединений 8-й группы. Около 25 —30% изоамилбензола превратились в метилнафталин. Одновременно образовались толуол, этилбензол, пропилбензол и бутилбензол. [c.245]

    Комбинированное использование двухкомпоцентного цеолитсодержащего катализатора для алкилирования изопарафинов олефинами и каталитического крекинга предусмотрено в схеме, описанной в работе [19]. Углеводороды, кипящие в пределах температур кипения газойля, подвергают крекингу на регенерированном двухкомпонентном катализаторе, состоящем из обычного цеолитсодержащего катализатора и синтетического цеолита ZSM-5. Условия процесса подбирают таким образом, чтобы обеспечить максимальный выход бензина и низкокипящих углеводородных газов, содержащих олефины и парафины. Газовую часть отделяют от бензина и направляют для контактирования со свежим катализатором. Содержащийся в нем цеолит ZSM-5 способствует алкилированию, циклизации и ароматизации. Продукты второй стадии смешивают с продуктами крекинга перед их фракционированием. Закоксованные катализаторы с I и II стадий крекинга объединяют и подвергают регенерации. Регенерированная смесь используется для крекинга газойля. [c.270]

    Скорость ароматизации возрастает с увеличением числа углеродных атомов в молекуле и с уменьшением насьш енности молекулы водородом. По скорости превращения в ароматический углев одород углеводороды разных классов располагаются в следующем порядке цшклоолефины > циклоиарафинов > олефинов > парафинов. С разветвлением цепи парафинового углеводорода, если сохраняется возможность непосредственного о бразова-ния шестичленного кольца, скорость ароматизации возрастает, так как увеличивается число В озможных комбинаций, по которым молекула парафина может замкнуться в кольцо. [c.126]

    Другие исследования показали, что в реакции ароматизации могут вовлекаться и олефиновые, и циклопентановые углеводороды. Олефины циклизуются, а алкилциклопентаны изомеризуются до соответствующих циклогексанов, которые затем дегидрируются. Алкилциклопентаны и алкилциклогексаны над платинированным углем при 310 °С (Ал. А. Петров, 1971 г.) могут также циклодеги-дрироваться с образованием бициклов. [c.242]

    Этими методами получают только олефины, не добиваясь полной ароматизации жидких продуктов пиролиза. Пиролиз ведут в присутствии большого количества водяного пара (частично служащего также и передатчиком тепла), что в значительной степени нрепятст1 ует коксообразованню и делает процесс почти непрерывным. [c.73]

    Если бы не наблюдалось побочных реакций, то температура пиролиза и продолжительность пребывания продуктов в зоне нагрева теоретически должны были бы быть взаимозаменимьгаи, т. е. при увеличении длительности реакции можно было бы вести процесс при более низкой температуре. Но в действительности при этом протекают вторичные реакции, в первую очередь полимеризация и ароматизация образовавшихся олефинов. В практике эти побочные реакции не удается полностью исключить, вследствие чего при переработке продуктов парофазного крекинга всегда образуются ароматические углеводороды. [c.85]

    Прежде всего рассмотрим такие процессы пиролиза жидких углеводородных смесей, целью которых является лишь получение олефинов, а не полная ароматизация. При пиролизе всегда получают богатую ароматическими соединениями жидкую фракцию, так как дансе в относительно мягких условиях происходит ароматиаация, и кроме того, ароматические углеводороды содержатся в исходном сырье. В то время как парафины и нафтены распадаются с образованием газообразных продуктов, ароматические углеводороды остаются нетронутыми и накапливаются в жидких остатках крекинга. [c.93]

    Следовательно, процесс пиролиза можно направить в сторону образования газа с высоким содержанием олефинов и особенно этилена. Но нри этом достигается лишь 50%-пая ароматизация жидких продуктов пиролиза. Жидкость можно снова возвратить в пиролизную нечь и, подвергнув пиролизу в более жестких условиях, провести более глубокую аромат1гзацию. Если же основной целью является получение ие этилена, а, нанример, пропена, бутенов и бутадиена, то температуру крекировапия уменьшают, а время нахождения пиролизуемого материала в зоне пиролиза увеличивают. При этом выход этилена падает, поскольку ои особенно легко подвержен вторичным реакциям. [c.121]


Смотреть страницы где упоминается термин Олефины ароматизация: [c.14]    [c.151]    [c.208]    [c.135]    [c.169]    [c.329]    [c.339]    [c.53]    [c.54]    [c.54]    [c.482]    [c.287]    [c.125]    [c.7]    [c.54]    [c.100]    [c.100]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.234 ]

Переработка нефти (1947) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматизация



© 2024 chem21.info Реклама на сайте