Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты кислотами Льюиса

    Аналогично реагируют со спиртами кислоты Льюиса, такие как фторид бора или хлорид цинка. [c.310]

    Простые эфиры можно получать, активируя гидроксильную группу спиртов кислотами Льюиса  [c.181]

    Известно, что при алкилировании бензола первичными спиртами и алкилгалогенидами при контакте с кислотами Льюиса образуются ароматические соединения с изомеризованной и не-изомеризованной структурами алкильных заместителей. При использовании в качестве алкилирующего агента пропанола-1 выход н-пропилбензола в зависимости от условий реакции составляет 15—40%. [c.140]


    В зависимости от строения спиртов их реакционная способность в реакции замещения группы ОН изменяется следующим образом первичные < вторичные < третичные. Эта закономерность наиболее наглядно наблюдается при взаимодействии спиртов с хлороводородной кислотой. Первичные спирты реагируют с ней только в присутствии кислот Льюиса и при одновременном пропускании газообразного НС1. В качестве кислоты Льюиса обычно используют хлорид цинка, который образует комплекс со спиртом  [c.141]

    Основный растворитель может связывать Я-кислоту — катализатор, понижая эффективность ее действия, или блокировать электрофильный центр кислоты Льюиса, конкурируя с нуклеофильным реагентом. Примером может служить ингибирующее влияние спиртов и воды на эпоксидирование олефинов алкилгидропероксидами в присутствии соединений металлов с переменной валентностью. На первой стадии этого процесса алкилгидропероксид, как нуклеофил, образует с катализатором донорно-акцепторный комплекс. [c.241]

    Еще Бутлеровым была открыта пинаколиновая перегруппировка, в процессе которой при действии на двутретичные спирты (пинаколины) электрофильными агентами (минеральными кислотами, кислотами Льюиса) происходит отщепление воды и образуются кетоны — пинаконы  [c.208]

    Из спиртов и кислот Льюиса  [c.353]

    При полимеризации в присутствии кислот Льюиса, так же как и при катионной полимеризации непредельных соединений, обычно требуются сокатализаторы. В качестве сокатализаторов используются вода, галогенводородные кислоты, спирты, галогеналкилы, ангидриды и хлорангидриды кислот. При этом образуется более активный комплекс, например [c.121]

    Перегруппировка проме)куточного биполярного иона в карбонильное соодинепие катализируется водой, спиртами, кислотами Льюиса. В случае несимметрично замещенных карбонильных соединений возможно образование двух новых карбонильных соединений. Хотя отмечается некоторая региооелективность процесса в зависимости от строения исходного карбонильного соединения и условий реакции,синтетическое значение имеет главным образом реакция С циклическими кетонами, которая приводит к расширение кольца (см. также с.204)  [c.47]

    В качестве катализаторов процесса алкилирования могут быть использованы как протонные кислоты, так и кислоты Льюиса. Протонные кислоты широко применяют при алкилировании ароматических углеводородов олефинами и спиртами, причем их активность падает в ряду НР>Н2304 НзР04. [c.17]


    Раздел, посвященный индивидуальным углеводородам, начат с изложения вопросов стереохимии и термодинамической устойчивости моно- и полициклических углеводородов. В силу ряда обстоятельств, стереохимии углеводородов уделялось значительно меньше внимания, чем стереохимии различных функционально-замещенных органических соединений (спирты, кислоты, кетоны и пр.), хотя, по логике вещей, именно стереохимия углеводородов должна была быть положена в основу изучения стереохимии прочих.органических соединений. В какой-то степени автор попытался восполнить этот пробел. Следующая глава посвящена вопросам термодинамической устойчивости и равновесных состояний для различных структурных изомеров. В последующих главах изложены вопросы кинетической реакционной способности различных углеводородов и приведены примеры многочисленных изомерных перегруппировок, протекающих под воздействием кислот Льюиса в жидкой фазе при комнатной температуре. Особое внимание уделено здесь рассмотрению вопросов динамической стереохимии и механизма протекающих реакций. Все эти исследования изложены в плане проблемы Строение и реакционная способность органических соединений . В заключение этого раздела приведена глава, посвященная синтезу индивидуальных углеводородов, причем рассмотрены как вопросы синтеза, осуществля- [c.4]

    Во всех случаях необходимо присутствие кислотного катализатора (А120 является кислотой Льюиса). С увеличением разветвленности спиртов дегидратация протекает при более низкой температуре. Атом водорода отщепляется от наименее гидрогенизированного (соседнего с гидроксилом) атома углерода. [c.77]

    С наибольщими выходами реагируют трег-бутиловый, алли-ловый и бензиловый спирты, дифенил- и трифенилметанолы. Труднее всего реагируют метиловый и этиловый спирты. На этом основании можно утверждать, что и в этом случае алки-лирующим агентом является карбокатион и его образованию предшествует протонирование атома кислорода гидроксильной группы с последующим отщеплением воды или координация по этому атому кислорода кислоты Льюиса  [c.385]

    Однако диазометан в обычных условиях неспособен метилировать спирты с образованием простых эфиров. Эту реакцию можно проводить только в присутствии каталитических количеств кислот Льюиса (например, ВРз), алкоксидов некоторых металлов [например, А1(ОС2Н5)з] или некоторых кислот с комп- [c.466]

    Гидролиз галогенопроизводных протекает медленно, реакция обратима. Повысить скорость образования спиртов можно, добавляя либо некоторые кислоты Льюиса (например, 2пСи, РеС1з), либо [c.100]

    Соединения трехвалентного бора проявляют склонность к заполнению парой электронов четвертой вакантной орбитали, выступая, таким образом, в роли кислоты Льюиса. В качестве доноров электронов могут выступать анионы и нуклеофильные реагеЕ1ты, обладающие неподеленными парами электронов (щелочи, амины, спирты, простые эфиры и т. д.)  [c.338]

    Типичными вторичными L-кислотами яе.ляются, например, альдегиды, СО2 и Sj. Диоксид углерода при температуре —60 °С в растворе этилового спирта мало активен и npaKTH4e f H не реагирует с этилатом натрия. Однако при комнатной температур Oj как вторичная кислота Льюиса вступает во взаимодействие с НО -ионами, образуя бикарбонат-ион  [c.242]

    Диапазон применимости этого метода такой же, как и реакции 10-22. И хотя ангидриды немного менее реакционноспособны, чем ацилгалогениды, их часто используют для получения сложных эфиров. В качестве катализаторов применяют кислоты, кислоты Льюиса и основания, но наиболее часто — пиридин. Катализ пиридином относится к нуклеофильному типу (см. реакцию 10-10). 4-(М,К-Диметиламино) пиридин — более активный катализатор, чем пиридин, его можно использовать в тех случаях, когда последний малоэффективен (см. обзоры [520]). Муравьиный ангидрид — неустойчивое соединение, но эфиры муравьиной кислоты можно приготовить, действуя на спирты [521] или фенолы [522] смешанным ангидридом муравьиной и уксусной кислоты. Реакция циклических ангидридов приводит к моноэтерифицированным дикарбоновым кислотам, например  [c.126]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]


    Сложные эфиры карбоновых кислот получаются при присоединении карбоновых кислот к олефинам. Эта реакция обычно катализируется кислотами (протонными илп кислотами Льюиса [155]) и по механизму аналогична реакции 15-4. Поскольку здесь соблюдается правило Марковникова, то из олефинов типа R2 = HR можно синтезировать труднодоступные сложные эфиры третичных спиртов (см., например, [156]). Наиболее подходящим растворителем для этой реакции является грет-бутпловый спирт [157]. При обработке сильной кислотой карбоновой кислоты, содержащей углерод-углеродную двойную связь, присоединение происходит внутримолекулярно, а продуктом является у- и(или) o-лактон независимо от исходного положенпя двойной связи в цепп, поскольку сильные кислоты катализируют и перемещение двойных связей (т. 2, реакция 12-2) [158]. Двойная связь всегда мигрирует в положение, удобное для реакции, независимо от того, приближение это или удаление от карбоксильной группы. Но с обсуждаемым процессом конкурирует еще одна реакция, в которой образуется производное циклопентспона или циклогексенона. По существу, это пример реакции 12-14 (т. 2). Но в каждом слу- [c.169]

    Пиролиз ацилазидов с образованием изоцианатов называется перегруппировкой Курциуса [218]. Эта реакция дает высокие выходы изоцианатов, которые не гидролизуются в амины из-за отсутствия воды. Конечно, они могут быть гидролизованы, и действительно, если реакцию проводить в воде или спирте, образуются амины, карбаматы или ациломочевины, как в реакции 18-16 [219]. Реакция носит общий характер она применима к любым карбоновым кислотам алифатическим, ароматическим, алициклическим, гетероциклическим, ненасыщенным и содержащим функциональные группы. Ацилазиды можно получить по реакции 10-63 (т. 2) или обработкой ацилгидразинов (гидразидов) азотистой кислотой (аналогично реакции 12-49, т. 2). Перегруппировка Курциуса катализируется кислотами Льюиса и протонными кислотами, но хорошие результаты получены и в отсутствие катализа. [c.157]

    Под названием реакция Шмидта объединяются три реакции, включающие присоединение азотистоводородной кислоты к карбоновым кислотам, альдегидам и кетонам, а также к спиртам й олефинам [230]. Самая типичная из них — реакция с карбоновыми кислотами — представлена на схеме выше [231]. Универсальным катализатором является серная кислота, используются также кислоты Льюиса. Хорошие результаты получаются в том случае, когда К — алифатическая группа, особенно с длинной цепью. Если К = арил, выходы продукта могут быть любыми, причем для стерически затрудненных соединений типа мезитойной кислоты они наиболее высоки. Преимущество этого [c.159]

    При УФ-экспонировании слоя ЦПИ, содержащего соединение (II) в том же соотношении оказалось, что уже через 15 мин наблюдалась дифференциация растворимости в спирте облученных и необлученных участков пленки, обусловленная фотоструктурированием ЦПИ в местах экспонирования. Следует отметить резкие различия в наклоне интегральных сенситометрических кривых для слоев ЦПИ с соединениями (I) и (И). В слоях, содержащих бис-лактонное производное (И), фотопроцесс протекает с меньшей скоростью. Известно [8], что эфиры лактонов под действием света или термически в присутствии кислот Льюиса, подвергаются внутримолекулярной перегруппировке Фриса. Для соединения (II) можно предположить тот же радикальный механизм фотопревращения. Возбуждение светом приводит к гомолитическому расщеплению связи о-карбонил с последующей миграцией ацила в ядро. Первоначально оба радикала (фенок-си- и карбонильный) остаются в клетке растворителя или полимера. Внутриклеточное взаимодействие, эффективно реализуемое в жесткой полимерной клетке, ведет к получению оксикетонов [9,10]. Образование о-оксиарилкетонной группы при фотохимической перегруппировке Фриса свидетельствует о возникновении "эффекта самостабилизации" [11] за счет образования сильной водородной связи С=0 - Н0. Вследствие этого производное (II) играет роль УФ-абсорбера, однако 8 ор для слоя композиции (ЦПИ) (П) составляет Т370 см /мДж, т.е. (II) играет роль слабого фотосенсибилизатора. [c.148]

    Если реакция с реактивом Гриньяра на первой стадии включает атаку одной молекулы реагента по карбонильному атому кислорода, то можно ожидать, что введение в раствор более сильной кислоты Льюиса ускорит реакцию, поскольку именно эта кислота будет преимущественно включаться в промежуточную структуру и наводить больший положительный заряд на атом углерода карбонильной группы. И действительно, добавление М2Вгг в ряде случаев удваивдло выход третичных спиртов при взаимодействии кетонов с реактива.ми Гриньяра. [c.213]

    Чаще всего окисление спиртов проводят с помощью хромового ангидрида и его комплексов (19Л- Существует также целый набор удобных методов окисления спиртов, основанный на использовании диметилсульфоксида в качестве окислителя в присутствии различных кислот Льюиса — это реакция Притцнера—Моффата (схема 2.60) [19<1]. В этой реакции ключевой стадией Является образование алкоксисульфолийилида в качестве интермедиата, который далее распадается, давая карбонтьное производное и диметил-сульфид. Диметилсульфоксид в присутствии оснований способен также окислять в карбонильные соединения и другие производные первого уровня окисления, такие, как алкилгалогениды и алкилтозилаты, через стадию образования того же интермедиата, но эта реакция эффективно протекает лишь с первичными субстратами [ 9g - [c.145]

    Напротив, стадии окисления первичных спиртов в альдегиды, а последних в кислоты [последовательноть (2)] резко различаются по своему механизму, что позволяет осуществить первую из этих реакций селективно за счет использования специфических реакций и реагентов. Для этой цели, например, очень эффективна система ДМСО — кислота Льюиса (см. схему 2.60), не способная окислять альдегиды. [c.160]

    Эффективность реакции галогенангидридов кислот со спиртами может быть повышена проведением предварительной реакции гало генангидрида с кислотой Льюиса с целью получения соли ацилия. Простейшей такой солью является, по-видимому, метилоксокар- [c.289]

    Какую роль играет безводный хлорид цинка в реактиве Лукаса Хлорид цинка представляет собой кислоту Льюиса, оп должеп реагировать с основаниями Льюиса. Спирты представляют собой как раз основания Льюиса, поэтому можно оншдать, что они реагируют с хлоридом ципка, как показано пиже. [c.420]

    Выбор алкйлирующих агентов очень обширен. Комплексы алкилга-логенидов с кислотами Льюиса, особенно с А1СЬ, протопированные спирты и протонированные алкены могут дать карбениевые ионы или другие реакционноспособные алкилирующие агенты  [c.232]

    Кроме комбинации алкилгалогенида с кислотой Льюиса в синтезе часто используют два других метода получения карбениевых ионов. Источником карбениевых ионов могут служить спирты в сильно кислой среде, например в серной или фосфорной кислоте, Алкилирование ароматических соединений спиртами катализуется такя<е ВРз и AI I3 [23], [c.234]


Смотреть страницы где упоминается термин Спирты кислотами Льюиса: [c.59]    [c.191]    [c.124]    [c.145]    [c.166]    [c.67]    [c.496]    [c.115]    [c.363]    [c.209]    [c.861]    [c.863]    [c.867]    [c.1020]    [c.1094]    [c.1194]    [c.1755]    [c.487]   
Органическая химия (2002) -- [ c.497 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты Льюиса

Льюис

Спирто-кислоты



© 2025 chem21.info Реклама на сайте