Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан потенциал пассивации

    Показана зависимость потенциала титана, молибдена и сплавов системы титан — молибден от времени (9а), а также значения скорости коррозии и стационарных потенциалов в зависимости от содержания в сплавах молибдена (96). Как видно из рис. 9, потенциалы исследуемых металлов и сплавов довольно быстро устанавливаются до постоянных, но довольно отрицательных значений. Однако с увеличением содержания молибдена потенциалы сплавов несколько облагораживаются, а скорость коррозии уменьшается. В 42%-ном растворе едкого кали высокой стойкостью обладает сплав, содержащий 40% молибдена, и нелегированный молибден. Сплав титана с 32% молибдена корродирует со скоростью, равной 0,1 г м -час. Исследование зависимости скорости коррозии от потенциала, проведенное в 50%-ном растворе едкого кали при 100° С, показало, что активная область титана, а именно потенциал его пассивации, почти совпадает с потенциалом перепассивации [c.76]


    Из этих данных видно, что титан по сравнению с другими металлами наиболее легко пассивируется, чему способствуют очень отрицательное значение потенциала пассивации и низкое значение тока пассивации [42]. [c.72]

    Анодные поляризационные кривые титана (0,9 В/ч) в соляной кислоте подобны известным [42, 43]. Критический потенциал пассивации титана при 20 °С фкр = —0,25 В, а потенциал полной пассивации с повышением концентрации соляной кислоты сдвигается в положительном направлении. Критическая плотность тока пассивации увеличивается при этом от 0,4 до 20 A/м . При потенциале от 0,5 до 1,0 В титан пассивен плотность тока равна 0,5 10-2 в 10%-ной ПС и 2,5 10- A/м в 30%-ной. Стационарный потенциал графита мало зависит от концентрации соляной кислоты и времени предварительной обработки образцов он составляет 0,64 0,05 В, что достаточно для анодной защиты титана. [c.134]

    Если у металла или сплава потенциал пассивации более отрицательный, чем потенциал катодного процесса водородной деполяризации на сплаве с катодной добавкой, то вполне возможна пассивация сплава за счет водородной деполяризации. На рис. 62 приведены катодные и анодные потенциостатические кривые для титана и сплава + 1% Р1 в 40%-ной Н23 04 нри 25 и 50° С [134]. Из этих кривых видно, что перенапряжение водорода при введении в титан 1 % Р1 снижается на 350—400 мв. Вследствие этого стационарный потенциал сплава титана с платиной смещается в положительную сторону, в область пассивных значений, где процесс анодного растворения титана сильно заторможен. Это обеспечивает высокую коррозионную стойкость сплава титана с платиной. [c.90]

    В большинстве современных исследований принимается, что пассивирующий окисел является непосредственным продуктом обычной анодной электрохимической реакции, протекающей с участием атомов металла и молекул воды. Однако вычисленные нормальные потенциалы реакций образования на титане всех известных его окислов, в том числе ТЮз, значительно отрицательнее наблюдаемого потенциала пассивации титана в 2 н. НаЗО . Вероятно, причину такого [c.18]

    Проведенные опыты дают основание считать, что как титан, так и титан с гидридным слоем в области активного анодного растворения окислены, причем степень окисления возрастает при смещении потенциала в положительном направлении. Вблизи потенциала пассивации на внешней поверхности образца начинает формироваться малорастворимый окисел, по-видимому, ТЮа. [c.22]

    Благоприятное действие оказывает титан на электрохимическое поведение алюминиевых покрытий в сероводородсодержащей среде (1200 г/л НгЗ). Введение 1,1 % Т1 приводит к некоторому облагораживанию стационарного потенциала (от —570 до —550 мВ), не оказывает влияния на потенциал полной пассивации ( = -500 мВ), способствует появлению обширной области пассивности, смещает потенциал пробоя от —180 до +140 мВ, уменьшает плотность тока полной пассивации в [c.93]


    Закономерности поведения металла в пассивном состоянии во многом определяются свойствами пассивирующих пленок. Так, если пленка медленно взаимодействует с электролитом, имеет полупроводниковую проводимость, то практически вся приложенная разность потенциалов падает внутри пленки, и тогда область пассивации может наблюдаться до очень высоких значений потенциала. При этом практически весь протекающий через систему ток будет расходоваться на прирост толщины оксидной пленки. Подобный вид зависимости наблюдается на титане, тантале, ниобии. [c.115]

    Стандартный электродный потенциал для реакции ионизации титана с образованием трехвалентных ионов (что более характерно для активного растворения титана в большинстве условий) равен —1,21 В. Это значение гораздо более отрицательно, чем потенциалы ионизации таких металлов как железо или цинк, что указывает на большую термодинамическую нестабильность титана по сравнению с этими металлами. Тем не менее, титан коррозионно более стоек, чем железо или цинк. Это зависит в первую очередь от большой склонности титана к пассивации. Стационарные потенциалы коррозии титана и его сплавов обычно [c.241]

    Необходимо указать на некоторые особенности пассивации титана и сплавов Т1—Рс1. В работе [80], а также [81,82] было в последнее время установлено, что в кислых растворах, находящихся в атмосфере инертного газа аргона или азота, а также при непрерывном обновлении коррозионного раствора нли при очень большо.м его объеме на единицу поверхности титан, а также сплавы Т1—0,2 Рс1 пассивируются хуже. Это можно проиллюстрировать экспериментальными данными, полученными ранее [80]. Из рис. 23 видно, что при ограниченном объеме раствора на сплаве Т1—0,2 Рс1 в кипящей 5%-ной НС1 устанавливается более положительный потенциал (сплав пассивируется), в то время как в большом объеме коррозионного раствора устанавливается отрицательный потенциал сплав остается активным и в этом состоянии имеет достаточно высокую скорость коррозионного процесса. Это хорошо видно на кривых (рис. 24) зависимости скорости коррозии от объема раствора и зависимости кинетики коррозии от обновления раствора. Аналогичное затруднение пассивации титановых сплавов наблюдалось также при переходе от воздушной ат- [c.51]

    Таким образом, результаты коррозионных испытаний согласуются с результатами электрохимических измерений. Благотворное влияние молибдена или хрома на повышение коррозионной стойкости сплавов титан—палладий объясняется тем, что оба эти элемента уменьшают ток анодного растворения титана вблизи его потенциала полной пассивации. В случае легирования хромом это достигается благодаря тому, что хром имеет более отрицательный потенциал полной пассивации, чем титан, а при легировании молибденом — главным образом за счет значительного снижения способности титана к анодному растворению. При дополнительном легировании сплавов титан—хром, титан—молибден палладием, обеспечивающим значительное смещение стационарного потенциала металла в положительную сторону, потенциал сплавов оказывается в области значений, где токи анодного растворения сплавов меньше, чем ток анодного растворения титана. [c.184]

    Тройные сплавы титан—палладий—молибден, а также титан—палладий—хром обладают большей устойчивостью, чем двойной сплав титан—палладий, что связано с уменьшением тока анодного растворения титана вблизи потенциала полной пассивации при легировании его молибденом или хромом. [c.185]

    Было показано, что такие металлы, как титан, хромистые и нержавеющие стали, будучи легированы небольшими добавками Р(1, Р1 (0,1—1,0%), легко переходят в пассивное состояние в условиях, где эти металлы без добавок активно растворяются (например, растворы Н28 04, НС1 и др.) [1—9]. Титан, который обладает высокой пассивируемостью в ряде сред, особенно интересен в этом отношении, поскольку его потенциал полной пассивации очень сильно смещен в отрицательную сторону, что особенно благоприятствует созданию сплавов с катодными добавками. Поскольку действие таких добавок связывается с их влиянием в основном на катодный процесс [2] и поскольку работу такой системы можно рассматривать как работу гальванической пары Т1 (анод) — легирующая добавка (катод), было интересно исследовать поведение титана в гальванических парах с чистыми катодными металлами, изучить и сравнить катодное поведение этих металлов, а также выявить роль различных катодных характеристик (перенапряжение водорода, предельный диффузионный ток по кислороду, перенапряжение ионизации кислорода, собственный стандартный потенциал добавки) в процессах пассивации титана в результате контакта с катодными металлами. [c.292]

    Величина перенапряжения ионизации кислорода на катодном контакте не имеет существенного значения для пассивации титана в данных условиях, т. е. в условиях, когда потенциал полной пассивации значительно отрицательнее потенциалов реакции ионизации кислорода на исследованных катодных материалах. Прямой связи между стандартным потенциалом катодного металла и способностью его пассивировать титан не наблюдается. Как известно, Аи обладает наиболее положительным потенциалом, однако по своей катодной эффективности он стоит после Р(1 и Р1. И наоборот, Рс1 по значению стандартного потенциала стоит после Ап и Р1, но является самым эффективным катодным металлом для Т1 [14]. Это объясняется тем, что в присутствии кислорода в системе на исследуемых металлах устанавливаются стационарные потенциалы, зависящие главным образом не от стандартных потенциалов, а от перенапряжения ионизации кислорода на этих металлах, т. е. работу таких электроположительных металлов в присутствии кислорода можно рассматривать как работу кислородных электродов с различным перенапряжением ионизации кислорода. [c.296]


    Таким образом, из анализа этих кривых можно сделать вывод, что Р1 и особенно Рс1, насыщенные водородом, обладают более высоким перенапряжением водорода, чем ненасыщенные (особенно при невысоких плотностях тока). Отсюда следует, что пассивирующее влияние платины и особенно влияние палладия, находящегося в контакте с титаном, будет зависеть от степени насыщения водородом этих контактных материалов. Еще заметнее это может проявиться в условиях, когда потенциал полной пассивации титана будет более положителен, чем потенциал обратимого водородного электрода. [c.298]

    На рис. 2.11 приведены анодные потенциодинамические кривые титана при различных температурах. Потенциалы Епп и Епп с изменением температуры практически не меняются и равны соответственно — 0,21 и 0,14 В. Критические токи пассивации и токи в пассивном состоянии с ростом температуры увеличиваются. При этом на кривых в пассивном состоянии исчезает область независимости плотности тока от потенциала. Постоянство скорости растворения титана в интервале 0< < <8 В при комнатной температуре в 2 н. Н2 04 экспериментально показано в работе [97]. На рис. 2.12 приведена потенцио-статическая кривая титана, начиная с потенциала полной пассивации. Стационарная плотность тока для титана с изменением потенциала от 0,14 до 1,4 В уменьшается почти на два порядка, и лишь начиная от потенциала 1,4 В наблюдается независимость плотности тока от потенциала. Такое поведение титана естественно связать с изменением свойств анодных пленок, формирующихся на титане при различных потенциалах. [c.40]

    Стандартный электродный потенциал титана составляет 1,21 в. Коррозия и анодное растворение титана даже в растворах серной и соляной кислот протекают лишь при —0,45 в и более положительных значениях потенциала. Это свидетельствует об очень большом торможении процесса растворения титана. Потенциостатические кривые анодного растворения титана и титана с гидридным слоем представлены на рис. 3. Из сравнения кривых 1 и 2 видно, что гидридный слой, полученный в течение 1 ч катодной поляризации, резко тормозит процесс анодного растворения титана предельный ток пассивации уменьшается почти в 2 раза, что согласуется с данными работы [4]. Увеличение продолжительности предварительной катодной поляризации от 1 до 18 ч (кривая 3) приводит к увеличению максимального анодного тока. Это объясняется разрыхлением поверхности под влиянием наводороживания, увеличением истинной поверхности, о котором говорилось уже выше. При равной истинной поверхности анодный ток на титане с гидридным слоем будет соответственно меньше (рис. 3, кривая 2). [c.20]

    Анодные кривые для титана и хрома одинаковы. На кривой можно отметить следующие характерные точки — стационарный потенциал, внешний ток равен нулю, V — потенциал начала пассивации соответствует максимальному току анодного растворения металла. При потенциалах более положительных, чем потенциаоЧ начала пассивации, скорость анодного растворения металла уменьшается —потенциал полной пассивации, при котором устанавливается минимальный анодный ток. При потенциалах, более положительных, чем потенциал полной пассивации, металл находится в пассивном состоянии, поддерживаемом внешней анодной поляризацией. Различие в анодном поведении титана и хрома состоит в следующем при высоких положительных потенциалах пассивное состояние титана не нарушается, в то время как у хрома наступает состояние перепассивации [10—12], в котором он начинает растворяться в виде шестивалентных ионов. Анодный ток, соответствующий началу пассивации, для хрома значительно больший, чем для титана. Потенциал полной пассивации у хрома более отрицательный, чем у титана. Перенапряжение водорода на хроме несколько более низкое, чем на титане. Стационарный потенциал молибдена в 40%-ной H SO равен +0,3 в, т. е. значительно более положителен, чем потенциал полной пассивации титана в этой среде. Поэтому в области потенциалов, где титан активно анодно растворяется на молибдене, протекают катодные процессы. Анодное растворение молибдена наблюдается только при значительном смещении его потенциалов в положительную сторону. Сопоставлением весовых потерь и количества пропущенного электричества установлено как в наших опытах, так и в работе [13], что растворение молибдена происходит в виде шестивалентных ионов. Молибден является коррозионностойким металлом в серной кислоте. Поэтому растворение молибдена в виде ионов высшей валентности при анодной поляризации можно трактовать как состояние перепассивации. Перенапряжение водорода на молибдене значительно более низкое, чем на титане. Палладий в серной кислоте анодно не растворяется. Рост анодного тока при высоких положительных потенциалах соответствует реакции выделения кислорода. Перенапряжение водорода на палладии значительно ниже, чем на титане. [c.179]

    Анализ приведенных данных показывает, что процессы окис-лообразования и пассивации титана не могут быть простыми. В частности, приходится отбросить предположение о возможности образования пассивирующего окисла в результате обычных реакций с участием атомов титана и молекул воды, так как отвечающие им нормальные потенциалы для всех известных окислов титана значительно отрицательнее наблюдаемого потенциала пассивации титана. Причина такого явления лежит в том, что поверхность титана всегда покрыта гидридным слоем, и в реакциях с водой участвует не сам титан, а его гидрид. В работе [26] показано соответствие электрохимического поведения титана и гидрида Т1Н2 в растворе Нг504, в частности практически совпадают потенциалы их пассивации. [c.18]

    Интересно сравнить электрохимические и коррозионные свойства титана со свойствами других технически важных металлов железа, хрома, никеля, молибдена, тантала, ниобия, циркония. Из сравнения стандартных потенциалов (см. табл. 1) видно, что титан одни из наиболее термодинамически неустойчивых среди них. Однако по коррозионной стойкости титан значительно превосходит многие из них. Титан наиболее легко по сравнению с Ре, Сг пассивируется. Об этом можно судить по величине тока пассивации и значению потенциала пассивации из нижеприведенных данных для 1-н. Н2504  [c.225]

    Интенсивность корозии титана в соляной кислоте можно уменьшить добавкой в раствор замедлителей коррозии— окислителей (азотная кислота, хромовая, К2СГ2О7, КМПО4, П2О2, О2 и др.), а также солей некоторых металлов (меди, железа, платины и др.). При этом потенциал новой системы титан— раствор приобретает более положительное значение. В таком окисле, как ТЮг, число дефектов решетки на границе окисел — газ настолько мало, что достаточно незначительного количества кислорода, чтобы их ликвидировать. Вновь появляющиеся в процессе растворения дефекты благодаря присутствию кислорода будут устраняться, т. е. процесс пассивации будет преобладать над процессом растворения титана. [c.282]

    Титан является термодинамически очень активным металлом. Его равновесный электрохимический потенциал равен —1,63 В. Характерной особенностью титана является высокая склонность к пассивации в окислительных и нейтральных средах. Вследствие этого-его стационарный потенциал в ряде сред (например, в морской воде) положительнее потенциалов конструкционных материалов, т. е. для титана не опасна контактная коррозия. Как указывалось в гл. 2, титан обладает высокой стойкостью в растворах, содерл<аших ионы хлора, в окислительных кислотах, в нейтральных средах, в щелочах средних концентраций (до 20%). Титан неустойчив в смеси плавиковой кислоты с азотной, а также в неокисляющих кислотах при повышенной температуре, в расплавленных солях. [c.76]

    Если потенциал выделения водорода положительнее потенциала полной пассивации Еи.и, то титан полностью станет пассивным. В противном случае достаточно полной пассивации Т1 может и не произойти. Однако если присутствуют какие-либо окислители в растворе (например, кислород), то устанавливающаяся более эффективная окислительная катодная деполяризация (кривая ЕохК. ) обеспечивает полную пассивность сплава. [c.76]

    Катодное модифицирование гальваническим осаждением палладия. На рис. 117 приведены кривые установления потенциалов коррозии в 20 7о-ной Н2504 при ЮОХ на титане и на титане с поверхностью, модифицированной различным количеством палладия. Потенциал исходного титана устанавливается в отрицательной области, что соответствует активному состоянию и быстрому раствррению образца. Наоборот, все катодно модифицированные образцы титана имеют стационарный потенциал в положительной области (положительнее потенциала полной пассивации), что соответствует самопассивации образцов и их высокой коррози- [c.327]

    На рис. 120 представлены изменения во времени потенциала коррозии в 20 %-ной Н2504 при 100°С образцов Т1, имплантированных различными количествами Ф внедренного палладия (от 10 до 5-10 Р(1- -/см, что соответствует от 10 до 90 усредненных атомных слоев палладия), энергиями пучка 40 и 90 кэВ (табл. 33). Неимплантированный титан в данных условиях имеет потенциал коррозии Ец около —0,44 В, т. е. находится в активной области и сильно корродирует. На образцах титана, имплантированных палладием, устанавливается потенциал, более положительный, чем потенциал полной пассивации титана, что соответствует его пассивному состоянию и высокой коррозионной стойкости. Только на образцах титана с минимальным количеством внедренного палладия (10 Рс1+/см2 при 40 кэВ, что соответствует в среднем около 10 монослоям палладия) после 10 ч испытания наблюдалось появление пиков периодической активации и некоторое снижение коррозионной стойкости. Все остальные имплантированные образцы были устойчиво пассивны и коррозионностойки. [c.331]

    Исследования, результаты которых приводятся ниже, касаются коррозионного и электрохимического поведения сплавов системы титан — молибден, а также нелегированных титана [32—34] и молибдена в растворах едкого кали при концентрациях от 40 до 50% и температурах 100—450° С. На рис. 8 представлена зависимость скорости коррозии титана от потенциала, полученная в 50%-ном растворе едкото кали. На потенциостатических кривых 1 я 2 имеются явно выраженные области активного растворения титана с максимумами при потенциале пассивации, равном —0,7 в. Повышение концентрации щелочи увеличивает скорость коррозии титана. По сравнению с растворами кислот в щелочных растворах активная область растворения титана смещена к более отрицательным значениям потенциала. [c.75]

    Многие металлы находятся в пассивном состоянии в некоторых агрессивных средах. Хром, никель, титан, цирконий легко переходят в пассивное состояние и устойчиво его сохраняют. Часто легирование металла, менее склонного к пассивации, металлом, пассивирующимся легче, приводит к образованию достаточно хорошо пассивирующихся сплавов. Примером могут служить разновидности сплавов Ре—Сг, представляющие собой различные нержавеющие и кислотоупорные стали, стойкие, например, в пресной воде, атмосфере, азотной кислоте и т. д. Для практического использования пассивности нужно такое сочетание свойств металла и среды, при котором последняя обеспечивает значение стационарного потенциала, лежащего в области Афп. Подобное использование пассивности в технике защиты от коррозии известно давно и имеет огромное практическое значение. [c.250]

    Титан можно отнести к металлам очень высокой пассивируемостью, превосходящей пассивируемость наиболее распространенных конструкционных металлов хрома, никеля и нержавеющих сталей. Это обстоятельство убедительно иллюстрируется данными рис. 2.1. Для титана характерны следующие отличия даже в подкисленном растворе и при более высокой температуре более отрицательный потенциал начала пассивации нп. Т1 = —0,05 В, п. ст. =-1-0,06 В сопоставимые плотности критического тока пассивации и, наконец, самое главное преимущество титана — значительно более широкая область потенциалов устойчивого пассивного состояния, которая ограничивается потенциалом питтингообразования, равным поТ1 = = 4,0 В и пост, = 0,12 В. [c.23]

    Карбид титана Т1С при анодной поляризации вблизи 1,05 В растворяется с образованием ТЮ . При повыщении потенциала до 1,8 В происходит пассивация, обусловленная образованием диоксида. При более высоких потенциалах начинается растворение карбида с образованием ионов Исследования [62] показали, что на запасснвированном титане возможно кратковременное выделение хлора с хорошим выходом. Однако за 12—14 ч потенциал возрастает до 3,0 В и выше, а поверхность анода покрывается пленкой диоксида. В кислых растворах пассивация карбида титана не наступает даже при плотности тока 500 А/м . Авторы [62] считают, что создание технически годного анода с активным слоем на основе карбида Т1С невозможно. К аналогичным выводам пришли авторы [63], изучавшие карбид бора и установившие, что при потенциалах выше 0,713 В начинается его необратимое окисление. [c.37]

    На рис. 3 представлено влияние непрерывного обновления поверхности на анодную поляризацию титана в растворе N На504 при наличии воздуха над электролитом. Из приведенных данных видно, что стационарный потенциал титана при непрерывной зачистке его поверхности смещается в отрицательную сторону почти на целый вольт и устанавливается при значении около — 0,7 в. При анодной поляризации для всех исследуемых скоростей обновления (т = 500, 1000, 2000 об мин) были получены характерные для явления пассивации потенциостатические кривые. Оказалось, что титан даже при зачистке поверхности при всех примененный скоростях обновления переходит в пассивное состояние. Очевидно, пассивное состояние на зачищаемом титане может возникнуть только в том случае, если скорость образования защитного слоя хемосорбированного кислорода будет превышать скорость обновления поверхности. Мы полагаем, что в условиях непрерывной зачистки поверхности причиной перехода титана в пассивное состояние является образование хемосорбированного слоя кислорода, который, однако, при смещении потенциала положительнее пп может утолщаться. [c.68]

    Ряд металлов — железо, хром, никель, титан, алюминий, цирконий и другие в концентрирЪванных растворах окислителей разрушаются значительно меньше, чем в более слабых растворах — происходит пассивация металлов. Металл в данном случае называют пассивным. Таким образом, пассивное состояние характеризуется относительно высокой коррозионной стойкостью, вызванной торможением анодной реакции ионизации металла в определенной области потенциала (см. рис. 6, участок 3). Снижение скорости коррозии происходит в результате образования на поверхности металла фазовых или адсорбционных слоев, тормозящих анодный процесс, оно начинается при потенциалах области активно-пассивного состояния (участок 2). [c.22]

    В работе [116] было показано, что в 40%-ной H2SO4 при 25 °С титанил-ионы не оказывают существенного влияния на потенциал и ток пассивации титана. Было высказано предположение, что более легкая пассивация титана в присутствии в растворе титанил-ионов объясняется основным действием их не на анодный, а на катодный процесс. Такой же точки зрения придерживались и в работе [117]. Эти авторы полагали, что в активной области потенциалов происходит восстановление Ti (IV)- до Ti (III)-ионов, которые диффундируют вглубь раствора и окисляются растворенным кислородом опять до Ti(IV)-ионов. Со временем происходит повышение концентрации Ti(IV)-ионов, ток восстановления которых становится выше критического тока пассивации титана. В итоге титан пассивируется, чего не могло произойти в отсутствии Ti (IV)-ионов, так как одного растворенного кислорода из-за его ограниченной растворимости недостаточно для обеспечения требуемой плотности катодного тока. [c.47]

    Путем сочетание электрохимических и радиоизотопных измерений исследовано влияние потенциала на скорость растворения пиролитических титан-окиснокобальтовых электродов (Со- Оц/Т -в растворах H I, НСЮ и H2S0 , а также в подкисленных растворах №аС1. Показано, что в области потенциалов 1,0 1,4 В (н.в.э.) электроды во всех исследованных растворах пассивируат-ся на участке пассивации тафелевский наклон близок к -0,12 Б. [c.19]

    Потенциал титана с гидридным слоем при равном значении плотности тока, например 0,06 ма1см (рис. 4, кривая 2), более положителен и устанавливается более медленно, чем на титане. При увеличении плотности тока до 0,09 ма1см , превышающей предельную плотность тока пассивирования для титана с гидридным слоем, потенциал образца уже непрерывно смещается в область полной пассивации. [c.22]


Смотреть страницы где упоминается термин Титан потенциал пассивации: [c.204]    [c.157]    [c.219]    [c.34]    [c.54]    [c.99]    [c.99]    [c.181]    [c.185]    [c.69]    [c.103]    [c.300]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.424 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивация

Потенциал пассивации



© 2024 chem21.info Реклама на сайте